3D coupled Eulerian-Lagrangian finite element analysis of end milling

2018 ◽  
Vol 98 (1-4) ◽  
pp. 849-857 ◽  
Author(s):  
Yifan Gao ◽  
Jeong Hoon Ko ◽  
Heow Pueh Lee
1999 ◽  
Author(s):  
V. Madhavan ◽  
L. Olovsson ◽  
S. C. Swargam ◽  
R. Agarwal

Abstract We describe here the development and testing of a capability for finite element simulation of practical machining operations such as turning and milling, using 3D multi-material, explicit dynamic, Eulerian finite element analysis. In these simulations the workpiece material and the air surrounding it are modeled using Eulerian finite elements and the flow of the workpiece material into the air as a result of the action of the Lagrangian tool can be freely tracked. Tension tests and Taylor impact tests are simulated using the traditional Lagrangian approach as well as the Eulerian approach. Comparison of the results is used to understand the factors affecting the solution accuracy. Simulations of orthogonal machining using this technique show that the side flow of the chip is simulated realistically. Simulations of oblique machining with various rake and inclination angles confirm that the chip flow angle is independent of the rake angle. Inertial effects cause the chip flow angle to differ from the inclination angle as the weight of the chip increases. Simulations of turning and end milling show that chip formation and flow can be simulated ab-initio. The simulation capability described here can provide accurate results for various outputs of interest and is also computationally efficient, allowing a typical analysis to be completed within a day.


2020 ◽  
Vol 993 ◽  
pp. 421-426
Author(s):  
Yun Hai Jia ◽  
Chong Hao Quan ◽  
Jian Mei Guo ◽  
Min Wang ◽  
Qin Jian Zhang

Polycrystalline diamond (PCD), is a tool material and widely used in nonferrous metal processing due to its excellent properties, such as high hardness, high wear resistance, high thermal conductivity and low friction coefficient. Considering the friction between the cutter and the workpiece, the heat generated by the elastic-plastic deformation and the heat transfer between the cutter and the workpiece. The finite element analysis software ABAQUS was used to study the effect of different processing parameters on the temperature field distribution and cutting force of the cutter, in the case of welded PCD double-edge end milling copper. The temperature distribution of cutting tools and the changing trend of cutting force with milling parameters was obtained. These technological parameters include the milling rotation speed n, the axial milling depth ap, and the feed rate f. The simulation results show that the tool temperature increases with the increase of milling depth, feed per revolution and rotation speed. However, the tool temperature has little effect on the tool life. Under the condition of satisfying the work-piece surface quality and machining efficiency, low speed, small milling depth and small feed should be selected as far as possible. Milling depth has a great influence on cutting force. When milling speed is about 2400 r/min, the axial milling depth is 0.3 mm, and the feed is 0.2 mm/r, which can obtain small milling force and lower tool temperature, and further extend the life of PCD tool.


2010 ◽  
Vol 458 ◽  
pp. 283-288 ◽  
Author(s):  
R. Izamshah R.A. ◽  
John Mo ◽  
Song Lin Ding

In an attempt to decrease weight, new commercial and military aircraft are designs with unitised monolithic metal structural components which contains of thinner ribs (i.e., walls) and webs (i.e., floors). Most of the unitised monolithic metal structural components are machined from solid plate or forgings with the start-to-finish weight ratio of 20:1. The resulting thin-walled structure often suffers a deformation which causes a dimensional surface error due to the action of the cutting force generated during the machining process. To alleviate the resulting surface errors, current practices rely on machining through repetitive feeding several times and manual calibration which resulting in long cycle times, low productivity and high operating cost. A finite element analysis (FEA) machining model is developed in this project to specifically predict the distortion or deflection of the part during end milling process. The model aims to provide an input for downstream decision making on error compensation strategy when machining a thin-wall unitised monolithic metal structural components. A set of machining tests have been done in order to validate the accuracy of the model and the results between simulation and experiment are found in a good agreement.


1997 ◽  
Vol 64 (2) ◽  
pp. 263-269 ◽  
Author(s):  
Seokwoo Kang ◽  
Seyoung Im

A new iterative scheme is proposed for finite element analysis of wrinkling or tension structures. The scheme is based upon the observation that there exists an invariant relationship, due to the uniaxial tensile stress state of wrinkling, between some of the strain components referred to the local frame aligned with wrinkling in a region where wrinkling occurs. This enables us to update the stress state and the internal forces correctly taking into account the existence of wrinkling. The finite element implementation of the scheme is straightforward and simple, and only minor modifications of the existing total Lagrangian finite element codes for membranes are needed. The validity of the scheme is demonstrated via numerical examples for the torsion of a membrane and the quasi-static inflation of an automotive airbag, both made of isotropic or anisotropic elastic membranes. The examples suggest that the present iterative scheme has a good convergence characteristic even for a large loading step.


2011 ◽  
Vol 1 ◽  
pp. 37-46 ◽  
Author(s):  
K. Kadirgama ◽  
M.M. Rahman ◽  
A.R. Ismail ◽  
R.A. Bakar

Sign in / Sign up

Export Citation Format

Share Document