Estimation of Welding-Induced Plastic Zone Size and Residual Stress Levels: Linear Heat Input Approximation

2021 ◽  
Author(s):  
Sachin Bhardwaj ◽  
R. M. Chandima Ratnayake

Abstract Welding is a highly nonlinear temperature distribution process, where the presence of high-temperature gradients leads to the development of significantly high residual stress levels, up to and/or beyond the material yield strength magnitude and localized plastic deformation. To achieve the desired dimensional accuracy, determination of plastic zone size, shape, and location is critically important in reducing or controlling final distortions, decreasing the residual stress according to length scale, and defining the optimum sequence of the welding process. The plastic zone caused by welding has been found to be directly proportional to linear heat input, defined in (J/mm). The use of actual linear heat input in the estimation of welding-induced residual stress in finite element models often results in an overestimation of heat transferred to the fusion zone of the metal. This manuscript highlights the importance of estimating plastic zone, developed during thermal processes like welding, and its role in mitigating final distortion by using a 3-bar model for the determination of final residual stresses. In the second part, previously developed analytical linear heat input solution for 2D residual stress models is discussed and further demonstrated using examples from open literature. Lastly, a sequentially uncoupled thermal and thermo-mechanical finite element analysis (FEA) is performed, using a generalized plane strain element, and concluded by validation of the numerically developed plastic zone size with analytically developed solutions.

Author(s):  
Xianjun Pei ◽  
Shaopin Song ◽  
Pingsha Dong

As demonstrated in a recent comprehensive study on construction of full-field residual stress profiles for fitness-for-service assessment of pressure vessel and piping components, a reasonable estimate of welding-induced plastic zone size is necessary for introducing a shell theory based solution form (Song et al, 2015 [1–2]). This paper presents an analytical method for estimating plastic zone size by first solving an equivalent one dimensional heat transfer problem in which weld zone is represented by a line segment with initial temperature at melting. Thermoplasticity conditions are then imposed by assuming elastic perfectly plastic behaviors. Finally, an analytical expression is obtained to relate plastic zone boundary to maximum temperature field distribution experienced by material points within the whole domain over the entire heating and cooling history. The solution can be further expressed by a rather simple form with the identification of a characteristic length parameter that signifies inflection point of temperature distribution. So estimated plastic zone sizes for various welded joint types have been compared with finite element residual stress analysis results in which sequentially coupled welding heat transfer and thermo-mechanical analysis procedures are used. A good agreement has been achieved for all cases analyzed. Compared with conventional finite element residual stress analysis procedures, this method offers significant simplicity and efficiency, while being reasonably accurate, particularly for applications in residual stress profile estimation and in evaluation of welding induced distortions in complex structures.


2013 ◽  
Vol 842 ◽  
pp. 455-461
Author(s):  
Yu Sha ◽  
Shi Gang Bai ◽  
Ya Hui Wang

Elastic–plastic finite element analyses have been performed to study the compressive stress effect on fatigue crack growth under applied tension–compression loading. The near crack tip stress, crack tip opening displacement and crack tip plastic zone size were obtained for a kinematic hardening material. The results have shown that the near crack tip local stress, displacement and reverse plastic zone size are controlled by the maximum stress intensity factors Kmax and the applied compressive stress σmaxcom under tension–compression. Based on the finite element analysis results, a fatigue crack propagation model using Kmax and σmaxcom as a parameters under tension–compression loading has been developed.The models under tension–compression loading agreed well with experimental observations.


1979 ◽  
Vol 46 (4) ◽  
pp. 817-820 ◽  
Author(s):  
C. Vilmann ◽  
T. Mura

The plastic flow at the crack tip is characterized by a model compatible with slip line theory. From this model it is shown that a continuous distribution of dislocations may be derived. Then assuming that these dislocations are emitted from the crack tip and move along slip lines to their final position, the Peach-Koehler force is used to calculate the plastic work involved. Since the plastic zone size is dependent on crack length, two plastic effects are present upon propagation. Primarily the distribution of dislocations present moves along with the crack tip, secondarily new dislocations are emitted to fill the larger plastic zone. These effects yield plastic work which is dependent on both σ2 and σ4, with σ being the applied stress. This dependancy yields a critical stress relationship different from that proposed by either Irwin or Orowan. It also leads to the determination of a subcritical flaw size, i.e., one which will never become unstable.


1994 ◽  
Vol 38 ◽  
pp. 427-434
Author(s):  
Hiroyuki Tabata ◽  
Zenjiro Yajima ◽  
Yukio Hirose

Abstract The fracture toughness test was conducted on γ + α2 two-phase TiAl alloys with lamellar, duplex and near-y structures. The x-ray fractographic technique was applied to the fracture, surfaces. The plastic zone size my was determined on the basis of the distributions of the residual stress and the half-value breadth beneath the fracture surfaces. Although the fracture mode shows microstructure dependence, ωγ is related to the fracture toughness value KIC and the yield stress σY as: ωy=α(KIC/σY) where α is 0.13.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1042
Author(s):  
Ali Reza Torabi ◽  
Behnam Shahbazian ◽  
Mirmilad Mirsayar ◽  
Sergio Cicero

The determination of the ductile failure behavior in engineering components weakened by cracks and notches is greatly dependent on the estimation of the plastic zone size (PZS) and, particularly, the effective plastic zone size (EPZS). Usually, time-consuming complex elastic–plastic analyses are required for the determination of the EPZS. Such demanding procedures can be avoided by employing analytical methods and by taking advantage of linear elastic analyses. In this sense, this work proposed a methodology for determining the PZS around the tip of blunt V-notches subjected to mixed mode I/II loading and plane-stress conditions. With this aim, firstly, existing approximate mathematical expressions for the elastic stress field near round-tip V-notches reported in the literature are presented. Next, Irwin’s approach (fundamentally proposed for sharp cracks) and a yield criterion (von Mises or Tresca) were applied and are presented. With the aim of verifying the proposed methodology, elastic–plastic finite element analyses were performed on virtual AISI 304 steel V-notched specimens. It was shown that the analytical formulations presented cannot estimate the complete shape of the plastic zone. However, the EPZS, which is crucial for predicting the type of ductile failure in notched members, can be successfully estimated.


Sign in / Sign up

Export Citation Format

Share Document