Mechanism of the Effect of Dilution With Different Inert Gases on Smoke Point of Propylene Diffusion Flames

Author(s):  
S. F. Goh ◽  
S. R. Gollahalli

An experimental study to compare the smoking characteristics of diffusion flames of propylene diluted nitrogen, argon, carbon dioxide and helium was performed. The mass flow rate of propylene at smoke point condition, which was defined as the critical fuel mass flow rate (CFMFR), was first determined. Then, CFMFR was divided into ten different fractions for the study of the mechanism of inert gas dilution on smoke point. The mass flow rate of each different inert gas to achieve the smoke point condition was then determined in the same manner. Flame radiation and the visible flame height for all the diluted fuel flames were measured. The axial soot concentration profiles of nitrogen-diluted smoke point flames were also measured using the laser induced incandescence (LII) method for selective conditions. The inert gas dilution study showed two distinct regions (chemical and momentum controlled regions). The study shows the amount diluent needed to achieve smoke point was in the decreasing order of Ar, CO2, N2 and He on mass basis. The analysis of the results showed that the main reason for this phenomenon was the heat sink capability of the gas. Hence, the specific heat of the gas was an important parameter. In general, nitrogen-diluted flames had higher flame length than other inert gas diluted flames. At higher CFMFR, in helium-diluted flames radiation was higher than in other flames.

2021 ◽  
Author(s):  
Dongsheng Zheng ◽  
Xin Hui ◽  
Xin Xue ◽  
Weitao Liu

Abstract The synergistic effect of soot formation refers to the interaction between different fuels during soot forming processes, which results in higher soot formation than any individual fuels. The present study experimentally investigates the synergistic effect of soot formation in co-flow diffusion flames of propane/ethylene fuel mixtures. The total carbon mass flow rate of the propane/ethylene mixture was kept constant at 0.5 mg/s, and the propane carbon ratio (RC) was defined as the ratio of carbon mass flow rate of propane to the total carbon mass flow rate. The laser-induced incandescence (LII) and light extinction (LE) techniques were applied to measure the soot volume fractions (SVF) at pressures of 0.1–0.5 MPa. The results showed strong synergistic effect in propane/ethylene mixtures at atmospheric conditions; however, increasing pressure weakens the synergistic effect. The LII intensity contours showed that the soot formation zone extends when synergistic effect occurs at RC = 0.1 and 0.2 for 0.1 and 0.3 Mpa. The normalized peak SVF showed that synergistic effect monotonically becomes weak with increasing pressure from 0.1 to 0.3 Mpa; meanwhile, the it still stayed strong at 0.2 Mpa when using normalized maximum soot yield, and then turned to be weaker as pressure increases. Further comparison analysis of the SVF profiles between RC = 0 and 0.1 revealed that the synergistic effect occurs at the two-wing area of the sooty flame at low axial flame height, and then gradually becomes stronger with increasing axial flame height in the soot zone for 0.1–0.3 Mpa. To illustrate the pressure effects on synergistic soot formation, numerical analysis in homogeneous closed reactor was conducted and it was found that The PAHs formation competition between C3H3 pathway and HACA mechanism results in the different soot formation phenomenon of ethylene/propane flames.


Author(s):  
S. F. Goh ◽  
S. Kusadomi ◽  
S. R. Gollahalli

The main purpose of this study was to comprehend the effects of burner diameter and fuel type on smoke point characteristics of a hydrocarbon diffusion flame and its radiation emission. The critical mass flow rate of pure fuel at this smoke point was measured. At nine different fractions of the critical mass flow rate, nitrogen gas was supplied along with the fuel to achieve smoke point. At each condition, flame radiation and flame height were measured. The axial radiation profile at the critical fuel mass flow rate for one burner was also measured. Three fuels of differing sooting propensities were used: ethylene (C2H4), propylene (C3H6), and propane (C3H8). Three different burners with inner diameters of 1.2 mm, 3.2 mm and 6.4 mm were used. Results showed that propylene had the highest critical fuel flow rate and the highest nitrogen dilution required to suppress smoking and total flame radiation, followed by ethylene and propane. For all fuels, the curves of nitrogen flow rate required for smoke suppression versus fuel flow rate exhibited a skewed bell shape. The variation of Reynolds number at the critical fuel mass flow rate with the burner diameter showed a linear relation. On the other hand, the variation of total flame radiation with burner diameter was nonlinear.


Author(s):  
Jie Zhou ◽  
Yuhua Ai ◽  
Wenjun Kong

Liftoff properties of DME laminar axisymmetric diffusion flames were investigated experimentally with emphasis on the preheating effects. At room temperature, DME presented a different liftoff phenomenon from the non-oxygenated hydrocarbon fuels. It could not be lifted off directly by increasing the jet velocity except for far field ignition at relatively low mass flow rate. When fuel and dilution were preheated, the DME flame could be lifted off directly by increasing the jet velocity. The range of the mass flow rate of stabilized DME liftoff flames became much narrower and the liftoff height became much smaller at fuel preheating than that at ambient temperature. With the increase of the jet temperature, the DME liftoff flames exhibited as one of the following three types: stationary lifted flames, stable oscillating lifted flames and unstable oscillating lifted flames. Stationary lifted flames existed when the initial temperature was relatively low (less than 350 K). Stable oscillating lifted flames were observed at relatively high preheated temperature (about 350 K ∼ 750 K), and the trajectory of the liftoff flame base was nearly sinusoidal. Both the oscillating frequency and amplitude increased with the preheating temperature. The oscillating lifted flames were caused by thermal buoyancy effect, inertia and the instability in the inner flow. When the jet temperature exceeded 750 K, the oscillating lifted flames became unstable and easily to be blown out. The flame base of the stabilized DME liftoff flame had a tribrachial structure at both ambient temperature and elevated temperature.


Author(s):  
D. F. Heravi ◽  
H. M. Heravi ◽  
K. Bashirnezhad ◽  
Hassan Sanaei ◽  
Amirhomayun Samiee

Carbon black has been widely used in industry, especially in rubber and plastic production. The present study is concerned with measuring and simulating the carbon black formation process in Propane-air and Acetylene-Air diffusion flames. The carbon black concentrations in the furnace have been measured by means of a soot pump and gravimetric method. The flue gas analysis is also done by means of Testo XL-350 Gas Analyzer. The numerical predictions are carried out with the CFD code, Fluent. The chemical reaction formulation relates the production of the carbon black to the incomplete combustion and pyrolysis of propane and Acetylene as both the main gas and the feedstock. The effects of feedstock mass flow rate, the position of feedstock injection, the feedstock material and the shape of the furnace on carbon black are studied. The results show the effect of temperature on soot and carbon black formation in which as the temperature increases the soot and carbon black mass fraction is also increased. The results also show that as the feedstock mass flow rate increases the formation of the carbon black is increased up to point where the mass flow rate of feed stock is three times greater than the mass flow rate of the main gas and after that the carbon black production rate starts decreasing because of the decreasing of temperature due to cold fuel injection to the furnace. The position of feedstock injection affects the mixing process of air and fuel, and complete mixing causes the temperature to be increased. The injection of feedstock in the pre-combustion zone influences the maximum of the flame temperature. As the hydrocarbon initially pyrolyzes to acetylene and afterwards acetylene breaks into soot and carbon black in the present study acetylene is used as feedstock, the results show huge increasing of soot and carbon black mass fraction in the products. The results also show that predictions and the experimental measurements are in good agreement.


Author(s):  
Achin Kumar Chowdhuri ◽  
Arindam Mitra ◽  
Somnath Chakraborti ◽  
Bijan Kumar Mandal

Although diffusion flame is free from many problems associated with premixed flame, soot formation is a major problem in diffusion flame. The techniques of dilution of fuel or air with inert gases such as nitrogen and argon are used to decrease soot level in the flame. In this work, a CFD code has been developed to predict the flame height, soot volume fraction and soot number density in an axisymmetric laminar confined methane-air diffusion flame after diluting the fuel with nitrogen. The temperatures of the air and fuel at inlet are taken as 300K. Mass flow rate of the fuel stream is considered as 3.71×10−6 kg/s and mass flow rate of the air is taken as 2.2104×10−6 kg/s. The total mass flow rate through the central jet (fuel jet) is, however, kept constant. The radiation effect is also included through an optically thin radiation model. An explicit finite difference technique has been adopted for the numerical solution of reacting flow and two equations soot model with variable thermodynamic and transport properties. The prediction shows that flame height decreases with the addition of nitrogen to the fuel. Temperature of the flame is considerably reduced in the given computational domain. Both soot volume fraction and soot number density decrease with dilution by adding nitrogen in the fuel jet. The soot formation at different nitrogen dilution level of 0%, 10%, 20%, 30%, 40% and 50% are plotted and the soot get considerably reduced as the concentration of nitrogen is increased in the fuel stream.


Sign in / Sign up

Export Citation Format

Share Document