In-Situ Measurement of 3-Dimensional Fluid Flow and Temperature in a Geometrically Complex Duct for Characterization of Heavy-Duty Gas Turbine Inlet Air Compressor Bleed Heat Systems

Author(s):  
Evan E. Daigle ◽  
Thomas P. Schmitt

As demands for increased operational flexibility are placed on heavy-duty gas turbines, the usage of inlet air compressor bleed heating devices has been expanded to increase the emissions-compliant operating envelope. To ensure that these devices maintain acceptable flow-field characteristics at the compressor face, a method to accurately determine the flow field characteristics at the compressor face is required. In the past, Computational Fluid Dynamics (CFD) analysis has been used to predict flow field characteristics at the compressor face. As a means by which to make a comparison between analytical predictions and empirically determined characteristics, a scale model direct measurement arrangement was devised and tested. Given the high flow speed and complex geometry in the vicinity of the compressor face, accurate in-situ measurement of the flow profile presents many challenges. The measurement arrangement must provide sufficient data density such that flow-field gradients are fully captured, while simultaneously maintaining a minimum level of obstruction attributable to the sensors. One of the end goals is to ensure that the measured flow is representative of the system in its final configuration. Measurement systems of sufficiently small size to minimally influence the flow, but of sufficiently high accuracy must be employed. Advances in the design and usage of a measurement system to empirically determine the flow field characteristics in the inlet air system of a heavy-duty industrial gas turbine are presented. This system was used to characterize a number of competing inlet air compressor bleed heating systems. The results of this characterization are compared qualitatively and quantitatively, with a specific focus on the technology of the measurement system and measurement techniques.

Author(s):  
Martin von Hoyningen-Huene ◽  
Wolfram Frank ◽  
Alexander R. Jung

Unsteady stator-rotor interaction in gas turbines has been investigated experimentally and numerically for some years now. Most investigations determine the pressure fluctuations in the flow field as well as on the blades. So far, little attention has been paid to a detailed analysis of the blade pressure fluctuations. For further progress in turbine design, however, it is mandatory to better understand the underlying mechanisms. Therefore, computed space–time maps of static pressure are presented on both the stator vanes and the rotor blades for two test cases, viz the first and the last turbine stage of a modern heavy duty gas turbine. These pressure fluctuation charts are used to explain the interaction of potential interaction, wake-blade interaction, deterministic pressure fluctuations, and acoustic waveswith the instantaneous surface pressure on vanes and blades. Part I of this two-part paper refers to the same computations, focusing on the unsteady secondary now field in these stages. The investigations have been performed with the flow solver ITSM3D which allows for efficient simulations that simulate the real blade count ratio. Accounting for the true blade count ratio is essential to obtain the correct frequencies and amplitudes of the fluctuations.


Author(s):  
Martin von Hoyningen-Huene ◽  
Wolfram Frank ◽  
Alexander R. Jung

Unsteady stator-rotor interaction in gas turbines has been investigated both experimentally and numerically for some years now. Even though the numerical methods are still in development, today they have reached a certain degree of maturity allowing industry to focus on the results of the computations and their impact on turbine design, rather than on a further improvement of the methods themselves. The key to increase efficiency in modern gas turbines is a better understanding and subsequent optimization of the loss-generation mechanisms. A major part of these are the secondary losses. To this end, this paper presents the time-resolved secondary flow field for the two test cases computed, viz the first and the last turbine stage of a modern heavy duty gas turbine. A companion paper referring to the same computations focuses on the unsteady pressure fluctuations on vanes and blades. The investigations have been performed with the flow solver ITSM3D which allows for efficient calculations that simulate the real blade count ratio. This is a prerequisite to simulate the unsteady phenomena in frequency and amplitude properly.


Author(s):  
Simone Cubeda ◽  
Tommaso Bacci ◽  
Lorenzo Mazzei ◽  
Simone Salvadori ◽  
Bruno Facchini ◽  
...  

Abstract Modern industrial gas turbines typically employ lean-premix combustors, which can limit pollutant emissions thanks to premixed flames, while sustaining high turbine inlet temperatures that increase the single-cycle thermal efficiency. As such, gas-turbine first stage nozzles can be characterized by a highly-swirled and temperature-distorted inlet flow field. However, due to several sources of uncertainty during the design phase, wide safety margins are commonly adopted, having a direct impact on engine performance and efficiency. Therefore, aiming at increasing the knowledge on combustor-turbine interaction and improving standard design practices, a non-reactive test rig composed of real hardware was assembled at the University of Florence, Italy. The rig, accommodating three lean-premix swirlers within a combustion chamber and two first stage film-cooled nozzles of a Baker Hughes heavy-duty gas turbine, is operated in similitude conditions. The rig has been designed to reproduce the real engine periodic flow field on the central vane channel, also allowing for measurements far enough from the lateral walls. The periodicity condition on the central sector was achieved by the proper design of both the angular profile and pitch value of the tailboards with respect to the vanes, which was carried out in a preliminary phase via a Design of Experiments procedure. In addition, circular ducts needed to be installed at the injectors outlet section to preserve the non-reactive swirling flow down to the nozzles’ inlet plane. The combustor-turbine interface section has been experimentally characterized in nominal operating conditions as per the temperature, velocity and pressure fields by means of a five-hole pressure probe provided with a thermocouple, installed on an automatic traverse system. To study the evolution of the combustor outlet flow through the vanes and its interaction with the film-cooling flow, such measurements have been replicated also downstream of the vanes’ trailing edge. This work allowed for designing and providing preliminary data on a combustor simulator capable of equipping and testing real hardware film-cooled nozzles of a heavy-duty gas turbine. Ultimately, the activity sets the basis for an extensive test campaign aimed at characterizing the metal temperature, film effectiveness and heat transfer coefficient at realistic aerothermal conditions. In addition, and by leveraging experimental data, this activity paves the way for a detailed validation of current design practices as well as more advanced numerical methodologies such as Scale-Adaptive Simulations of the integrated combustor-turbine domain.


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Daniele Pampaloni ◽  
Pier Carlo Nassini ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Matteo Cerutti

Abstract A numerical investigation of pollutant emissions of a novel dry low-emissions burner for heavy-duty gas turbine applications is presented. The objective of this work is to develop and assess a robust and cost-efficient numerical setup for the prediction of NOx and CO emissions in industrial gas turbines and to investigate the pollutant formation mechanisms, thus supporting the design process of a novel low-emission burner. To this end, a comparison against experimental data, from a recent experimental campaign performed by BHGE in cooperation with University of Florence, has been exploited. In the first part of this work, a Reynolds-averaged Navier–Stokes (RANS) approach on both a simplified geometry and the complete domain is adopted to characterize the global flame behavior and validate the numerical setup. Then, unsteady simulations exploiting the scale adaptive simulation (SAS) approach have been performed to assess the prediction improvements that can be obtained with the unsteady modeling of the flame. For all simulations, the flamelet generated manifold (FGM) model has been used, allowing the reliable and cost-efficient application of detailed chemistry mechanisms in computational fluid dynamics (CFD) simulation. However, FGM typically faces issues predicting flame emissions, such as NOx and CO, due to the wide range of time scales involved, from turbulent mixing to pollutant species oxidation. Specific models are typically used to predict NOx emissions, starting from the converged flow-field and introducing additional transport equations. Also CO prediction, especially at part-load operating conditions could be an issue for flamelet-based model: in fact, as the load decreases and the extinction limit approaches, a superequilibrium CO concentration, which cannot be accurately predicted by FGM, appears in the exhaust gases. To overcome this issue, a specific CO-burn-out model, following the original idea proposed by Klarmann, has been implemented in ANSYS fluent. The model allows to decouple the effective CO oxidation term from the one computed by FGM, defining a postflame zone where the source term of CO is treated following the Arrhenius formulation. In order to support the design process, an indepth CFD investigation has been carried out, evaluating the impact of an alternative burner geometrical configuration on stability and emissions and providing detailed information about the main regions and mechanisms of pollutants production. The outcomes support the analysis of experimental results, allowing an indepth investigation of the complex flow-field and the flame-related quantities, which have not been measured during the tests.


Author(s):  
Daniele Pampaloni ◽  
Pier Carlo Nassini ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Matteo Cerutti

Abstract A numerical investigation of pollutant emissions of a novel dry low-emissions burner for heavy-duty gas turbine applications is presented. The objective of the work is to develop and assess a robust and cost-efficient numerical setup for the prediction of NOx and CO emissions in industrial gas turbines and to investigate the pollutant formation mechanisms, thus supporting the design process of a novel low-emission burner. To this end, a comparison against experimental data, from a recent experimental campaign performed by BHGE in cooperation with University of Florence, has been exploited. In the first part of this work, a RANS approach on both a simplified geometry and the complete domain is adopted to characterize the global flame behavior and validate the numerical setup. Then, unsteady simulations exploiting the Scale Adaptive Simulation (SAS) approach have been performed to assess the prediction improvements that can be obtained with the unsteady modelling of the flame. For all simulations, the Flamelet Generated Manifold (FGM) model has been used, allowing the reliable and cost-efficient application of detailed chemistry mechanisms in CFD simulation. However, FGM typically faces issues predicting flame emissions, such as NOx and CO, due to the wide range of time scales involved, from turbulent mixing to pollutant species oxidation. Specific models are typically used to predict NOx emissions, starting from the converged flow field and introducing additional transport equations. Also CO prediction, especially at part-load operating conditions could be an issue for flamelet-based model: in fact, as the load decreases and the extinction limit approaches, a super-equilibrium CO concentration, which cannot be accurately predicted by FGM, appears in the exhaust gases. To overcome this issue, a specific CO burn-out model, following the original idea proposed by Klarmann, has been implemented in ANSYS Fluent. The model allows to decouple the effective CO oxidation term from the one computed by FGM, defining a post-flame zone where the source term of CO is treated following the Arrhenius formulation. In order to support the design process, an in-depth CFD investigation has been carried out, evaluating the impact of an alternative burner geometrical configuration on stability and emissions and providing detailed information about the main regions and mechanisms of pollutants production. The outcomes support the analysis of experimental results, allowing an in-depth investigation of the complex flow-field and the flame-related quantities, which have not been measured during the tests.


Author(s):  
Robert E. Dundas

This paper opens with a discussion of the various mechanisms of cracking and fracture encountered in gas turbine failures, and discusses the use of metallographic examination of crack and fracture surfaces. The various types of materials used in the major components of heavy-duty industrial and aeroderivative gas turbines are tabulated. A collection of macroscopic and microscopic fractographs of the various mechanisms of failure in gas turbine components is then presented for reference in failure investigation. A discussion of compressor damage due to surge, as well as some overall observations on component failures, follows. Finally, a listing of the most likely types of failure of the various major components is given.


Author(s):  
Thomas Palmé ◽  
Francois Liard ◽  
Dan Cameron

Due to their complex physics, accurate modeling of modern heavy duty gas turbines can be both challenging and time consuming. For online performance monitoring, the purpose of modeling is to predict operational parameters to assess the current performance and identify any possible deviation between the model’s expected performance parameters and the actual performance. In this paper, a method is presented to tune a physical model to a specific gas turbine by applying a data-driven approach to correct for the differences between the real gas turbine operation and the performance model prediction of the same. The first step in this process is to generate a surrogate model of the 1st principle performance model through the use of a neural network. A second “correction model” is then developed from selected operational data to correct the differences between the surrogate model and the real gas turbine. This corrects for the inaccuracies between the performance model and the real operation. The methodology is described and the results from its application to a heavy duty gas turbine are presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document