scholarly journals Investigation of Failure in Gas Turbines: Part 2 — Engineering and Metallographic Aspects of Failure Investigation

Author(s):  
Robert E. Dundas

This paper opens with a discussion of the various mechanisms of cracking and fracture encountered in gas turbine failures, and discusses the use of metallographic examination of crack and fracture surfaces. The various types of materials used in the major components of heavy-duty industrial and aeroderivative gas turbines are tabulated. A collection of macroscopic and microscopic fractographs of the various mechanisms of failure in gas turbine components is then presented for reference in failure investigation. A discussion of compressor damage due to surge, as well as some overall observations on component failures, follows. Finally, a listing of the most likely types of failure of the various major components is given.

2021 ◽  
Vol 58 (12) ◽  
pp. 781-792
Author(s):  
A. Neidel ◽  
T. Gädicke ◽  
S. Riesenbeck ◽  
S. Wallich

Abstract In this contribution, a case study is presented describing the failure of a combustion chamber assembly in a non-OEM (Original Equipment Manufacturer) gas turbine engine used for power generation. It showed how even advanced fabrication methods, such as Electron Beam (EB) welding, could trigger fatigue fracture, even if there are no material defects, no weld imperfections, no fabrication flaws, and even if everything is within specified limits. As is so often the case in component failures, the fact that failures occur anyway, despite the absence of out-of-spec material properties, and even though there were no fabrication flaws, is attributable to the design; which is often not sturdy enough to withstand unexpected dynamic loading.


Author(s):  
Thomas Palmé ◽  
Francois Liard ◽  
Dan Cameron

Due to their complex physics, accurate modeling of modern heavy duty gas turbines can be both challenging and time consuming. For online performance monitoring, the purpose of modeling is to predict operational parameters to assess the current performance and identify any possible deviation between the model’s expected performance parameters and the actual performance. In this paper, a method is presented to tune a physical model to a specific gas turbine by applying a data-driven approach to correct for the differences between the real gas turbine operation and the performance model prediction of the same. The first step in this process is to generate a surrogate model of the 1st principle performance model through the use of a neural network. A second “correction model” is then developed from selected operational data to correct the differences between the surrogate model and the real gas turbine. This corrects for the inaccuracies between the performance model and the real operation. The methodology is described and the results from its application to a heavy duty gas turbine are presented in this paper.


Author(s):  
Wolfgang Kappis ◽  
Stefan Florjancic ◽  
Uwe Ruedel

Market requirements for the heavy duty gas turbine power generation business have significantly changed over the last few years. With high gas prices in former times, all users have been mainly focusing on efficiency in addition to overall life cycle costs. Today individual countries see different requirements, which is easily explainable picking three typical trends. In the United States, with the exploitation of shale gas, gas prices are at a very low level. Hence, many gas turbines are used as base load engines, i.e. nearly constant loads for extended times. For these engines reliability is of main importance and efficiency somewhat less. In Japan gas prices are extremely high, and therefore the need for efficiency is significantly higher. Due to the challenge to partly replace nuclear plants, these engines as well are mainly intended for base load operation. In Europe, with the mid and long term carbon reduction strategy, heavy duty gas turbines is mainly used to compensate for intermittent renewable power generation. As a consequence, very high cyclic operation including fast and reliable start-up, very high loading gradients, including frequency response, and extended minimum and maximum operating ranges are required. Additionally, there are other features that are frequently requested. Fuel flexibility is a major demand, reaching from fuels of lower purity, i.e. with higher carbon (C2+), content up to possible combustion of gases generated by electrolysis (H2). Lifecycle optimization, as another important request, relies on new technologies for reconditioning, lifetime monitoring, and improved lifetime prediction methods. Out of Alstom’s recent research and development activities the following items are specifically addressed in this paper. Thermodynamic engine modelling and associated tasks are discussed, as well as the improvement and introduction of new operating concepts. Furthermore extended applications of design methodologies are shown. An additional focus is set ono improve emission behaviour understanding and increased fuel flexibility. Finally, some applications of the new technologies in Alstom products are given, indicating the focus on market requirements and customer care.


Author(s):  
Robert E. Dundas

This paper is Part 1 of a two-part paper on the principles and methods of failure investigation in gas turbines. The qualities of a successful failure investigator are presented, and the most efficacious approaches to an investigation are discussed. An example of an aircraft accident that might have been avoided is used to support the necessity for thorough and conclusive investigations into failures. Two case histories involving heavy-duty industrial gas turbines are described to demonstrate different aspects of the logical approach to construction of hypotheses and the determination of the essential cause of a failure — the one event without which the failure would not have occurred.


1974 ◽  
Author(s):  
Marv Weiss

A unique method for silencing heavy-duty gas turbines is described. The Switchback exhaust silencer which utilizes no conventional parallel baffles has at operating conditions measured attenuation values from 20 dB at 63 Hz to 45 dB at higher frequencies. Acoustic testing and analyses at both ambient and operating conditions are discussed.


Author(s):  
O. R. Schmoch ◽  
B. Deblon

The peripheral speeds of the rotors of large heavy-duty gas turbines have reached levels which place extremely high demands on material strength properties. The particular requirements of gas turbine rotors, as a result of the cycle, operating conditions and the ensuing overall concepts, have led different gas turbine manufacturers to produce special structural designs to resolve these problems. In this connection, a report is given here on a gas turbine rotor consisting of separate discs which are held together by a center bolt and mutually centered by radial serrations in a manner permitting expansion and contraction in response to temperature changges. In particular, the experience gained in the manufacture, operation and servicing are discussed.


Author(s):  
Vasco Mezzedimi ◽  
Pierluigi Nava ◽  
Dave Hamilla

The full mapping of a new gas turbine axial compressor at different speeds, IGV settings and pressure ratios (from choking to surge) has been performed utilizing a complete gas turbine with a suitable set of modifications. The main additions and modifications, necessary to transform the turbine into the Compressor Test Vehicle (CTV), are: - Compressor inlet throttling valve addition - Compressor discharge bleed valve addition - Turbine 1st stage nozzle area reduction - Starting engine change (increase in output and speed range). This method has been successfully employed on two different single shaft heavy-duty gas turbines (with a power rating of 11MW and 170 MW respectively). The paper describes the theoretical basis of this testing method and a specific application with the above mentioned 170 MW machine.


Author(s):  
Martin von Hoyningen-Huene ◽  
Wolfram Frank ◽  
Alexander R. Jung

Unsteady stator-rotor interaction in gas turbines has been investigated experimentally and numerically for some years now. Most investigations determine the pressure fluctuations in the flow field as well as on the blades. So far, little attention has been paid to a detailed analysis of the blade pressure fluctuations. For further progress in turbine design, however, it is mandatory to better understand the underlying mechanisms. Therefore, computed space–time maps of static pressure are presented on both the stator vanes and the rotor blades for two test cases, viz the first and the last turbine stage of a modern heavy duty gas turbine. These pressure fluctuation charts are used to explain the interaction of potential interaction, wake-blade interaction, deterministic pressure fluctuations, and acoustic waveswith the instantaneous surface pressure on vanes and blades. Part I of this two-part paper refers to the same computations, focusing on the unsteady secondary now field in these stages. The investigations have been performed with the flow solver ITSM3D which allows for efficient simulations that simulate the real blade count ratio. Accounting for the true blade count ratio is essential to obtain the correct frequencies and amplitudes of the fluctuations.


1974 ◽  
Author(s):  
J. N. Shinn

Modern heavy-duty gas turbine installations employ a comprehensive system of protective circuits to provide needed equipment protection without jeopardizing plant reliability. The design of these circuits and the overall protective system philosophy are discussed to illustrate how protection and reliability are maximized. Experience gained to date on the application of these protective circuits also is reviewed.


Sign in / Sign up

Export Citation Format

Share Document