Combustion Characteristics of a Dual Fuel Diesel Engine with Natural Gas (Lower limit of Cetane Number for Ignition of the Fuel)

2012 ◽  
Vol 5 (3) ◽  
pp. 1165-1173 ◽  
Author(s):  
Yasufumi Yoshimoto ◽  
Eiji Kinoshita ◽  
Shanbu Luge ◽  
Takatoshi Ohmura
Author(s):  
Yasufumi Yoshimoto ◽  
Eiji Kinoshita

This paper investigates the performance, exhaust emissions, and combustion characteristics of a dual fuel diesel engine fueled by CNG (compressed natural gas) as the main fuel. The experiments used standard ignition fuels prepared by n-hexadecane and heptamethylnonane which are used to define the ignitability of diesel combustion, and focused on the effects of fuels with better ignitability than ordinary gas oil such as fuels with higher cetane numbers, 70 and 100. Compared with gas oil ignition, a standard ignition fuel with C.N. 100 showed shorter ignition delays, and lower NOx exhaust concentrations, and engine noise. The results also showed that regardless of ignition fuel, misfiring occurred when the CNG supply was above 75%. While the CNG ratio where misfiring occurs lowered somewhat with increasing C.N., the combustion stability (defined as the standard deviation in the cycle to cycle variation of IMEP divided by the mean value of IMEP) was little influenced. In summary, the results show that the influence of the ignitability on the engine performance and emission characteristics of the dual fuel operation is relatively small when the ignition fuel has C.N., and similar to or higher than ordinary gas oil.


2016 ◽  
Vol 82 (835) ◽  
pp. 15-00542-15-00542 ◽  
Author(s):  
Yasufumi YOSHIMOTO ◽  
Masayuki YAMADA ◽  
Eiji KINOSHITA ◽  
Kazuyo FUSHIMI

2019 ◽  
Vol 44 (26) ◽  
pp. 13974-13987 ◽  
Author(s):  
S. Ouchikh ◽  
M.S. Lounici ◽  
L. Tarabet ◽  
K. Loubar ◽  
M. Tazerout

2021 ◽  
Vol 9 (2) ◽  
pp. 123
Author(s):  
Sergejus Lebedevas ◽  
Lukas Norkevičius ◽  
Peilin Zhou

Decarbonization of ship power plants and reduction of harmful emissions has become a priority in the technological development of maritime transport, including ships operating in seaports. Engines fueled by diesel without using secondary emission reduction technologies cannot meet MARPOL 73/78 Tier III regulations. The MEPC.203 (62) EEDI directive of the IMO also stipulates a standard for CO2 emissions. This study presents the results of research on ecological parameters when a CAT 3516C diesel engine is replaced by a dual-fuel (diesel-liquefied natural gas) powered Wartsila 9L20DF engine on an existing seaport tugboat. CO2, SO2 and NOx emission reductions were estimated using data from the actual engine load cycle, the fuel consumption of the KLASCO-3 tugboat, and engine-prototype experimental data. Emission analysis was performed to verify the efficiency of the dual-fuel engine in reducing CO2, SO2 and NOx emissions of seaport tugboats. The study found that replacing a diesel engine with a dual-fuel-powered engine led to a reduction in annual emissions of 10% for CO2, 91% for SO2, and 65% for NOx. Based on today’s fuel price market data an economic impact assessment was conducted based on the estimated annual fuel consumption of the existing KLASCO-3 seaport tugboat when a diesel-powered engine is replaced by a dual-fuel (diesel-natural gas)-powered engine. The study showed that a 33% fuel costs savings can be achieved each year. Based on the approved methodology, an ecological impact assessment was conducted for the entire fleet of tugboats operating in the Baltic Sea ports if the fuel type was changed from diesel to natural gas. The results of the assessment showed that replacing diesel fuel with natural gas achieved 78% environmental impact in terms of NOx emissions according to MARPOL 73/78 Tier III regulations. The research concludes that new-generation engines on the market powered by environmentally friendly fuels such as LNG can modernise a large number of existing seaport tugboats, significantly reducing their emissions in ECA regions such as the Baltic Sea.


Author(s):  
Shuonan Xu ◽  
David Anderson ◽  
Mark Hoffman ◽  
Robert Prucka ◽  
Zoran Filipi

Energy security concerns and an abundant supply of natural gas in the USA provide the impetus for engine designers to consider alternative gaseous fuels in the existing engines. The dual-fuel natural-gas diesel engine concept is attractive because of the minimal design changes, the ability to preserve a high compression ratio of the baseline diesel, and the lack of range anxiety. However, the increased complexity of a dual-fuel engine poses challenges, including the knock limit at a high load, the combustion instability at a low load, and the transient response of an engine with directly injected diesel fuel and port fuel injection of compressed natural gas upstream of the intake manifold. Predictive simulations of the complete engine system are an invaluable tool for investigations of these conditions and development of dual-fuel control strategies. This paper presents the development of a phenomenological combustion model of a heavy-duty dual-fuel engine, aided by insights from experimental data. Heat release analysis is carried out first, using the cylinder pressure data acquired with both diesel-only and dual-fuel (diesel and natural gas) combustion over a wide operating range. A diesel injection timing correlation based on the injector solenoid valve pulse widths is developed, enabling the diesel fuel start of injection to be detected without extra sensors on the fuel injection cam. The experimental heat release trends are obtained with a hybrid triple-Wiebe function for both diesel-only operation and dual-fuel operation. The ignition delay period of dual-fuel operation is examined and estimated with a predictive correlation using the concept of a pseudo-diesel equivalence ratio. A four-stage combustion mechanism is discussed, and it is shown that a triple-Wiebe function has the ability to represent all stages of dual-fuel combustion. This creates a critical building block for modeling a heavy-duty dual-fuel turbocharged engine system.


Sign in / Sign up

Export Citation Format

Share Document