PID Control Design and Demonstration Using a Cyber-Physical Fuel Cell/Gas Turbine Hybrid System

Author(s):  
Bernardo Restrepo ◽  
Paolo Pezzini ◽  
David Tucker ◽  
Harry Bonilla ◽  
Kenneth “Mark” Bryden

The emphasis on traditional control in power systems has traditionally focused on the application of first order transfer functions to develop gains in distributed PI or PID control. The application of traditional PI or PID control in fuel cell turbine hybrid power systems for setpoint tracking or disturbance rejection during transient operation has proved to be challenging because the interaction and nonlinearities. In this work, a systematic approach to specifying ideal gains for PID control was established and then applied to hybrid systems using the cyber-physical emulation facility at the National Energy Technology Laboratory. Through testing on hardware, it was proved that the control variable response to actuator modulation was not first order. By developing second order transfer functions to specify gains, the response of the system was predicted as expected by simulation. Testing of a hot air bypass valve to control fuel cell cathode airflow setpoint tracking and disturbance rejection was effectively demonstrated with response behaviors as expected, rise times under 3.5 seconds, and overshoot predicted for the underdamped case.

Author(s):  
Hamed Dashtaki ◽  
Davood Ghadiri Moghaddam ◽  
Mohammad Jafar Kermani ◽  
Reza Hoseini Abardeh ◽  
Mohammad Bagher Menhaj

In this paper, a simplified model partial pressure of Polymer Electrolyte Membrane Fuel Cell (PEMFC) is introduced. A Multi-Input–Multi-Output (MIMO) dynamic model with two inputs and two outputs is considered, where the inputs are control variable of anode and cathode, and the outputs are partial pressures of hydrogen and oxygen. Initially, the H∞ robust control strategies were applied to stabilize the system. The results show that the amplitude of alternative disturbances is decreased from 10 atm to 0.25 atm. Also, the pressure of each electrode tracks various input pressure profiles with negligible steady-state errors. On the other hand, the electrode pressure does not depend on the variations of constrained electrical current profiles by consumer in the PEM fuel cells. According to unsuitable percent overshoot (P.O.) and settling time of transient model response, system identification techniques are adopted to estimate the system’s transfer functions. After that a PID controller acting as a supervisory controller is properly developed to adjust the transient state behavior of the overall system. This makes the amplitude of alternative disturbances decrease from 10 atm to 0.003 atm. With this controller, the percent overshoot also decreases from 46% to 2% and the settling time (for 2% error) decreases from 0.26 to 0.03 seconds.


Author(s):  
Alex Tsai ◽  
Larry Banta ◽  
David Tucker ◽  
Randall Gemmen

This paper presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The facility provides for the testing and simulation of different fuel cell models that in turn help identify the key issues encountered in the transient operation of such systems. An empirical model of the facility consisting of a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in Transfer Function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H-Infinity robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence.


Author(s):  
Alex Tsai ◽  
Larry Banta ◽  
David Tucker ◽  
Randall Gemmen

This paper presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation comprises a physical simulation of a 300 kW fuel cell coupled to a 120 kW auxiliary power unit single spool gas turbine. The facility provides for the testing and simulation of different fuel cell models that in turn help identify the key issues encountered in the transient operation of such systems. An empirical model of the facility consisting of a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H-infinity robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow and the turbo machinery states of temperature and speed under transient disturbances. This algorithm is then tested on a SIMULINK/MATLAB platform for various perturbations of load and fuel cell heat effluence.


1985 ◽  
Vol 16 (7) ◽  
Author(s):  
C. E. BAUMGARTNER ◽  
R. H. ARENDT ◽  
C. D. IACOVANGELO ◽  
B. R. KARAS

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Thomas George ◽  
V. Ganesan

AbstractThe processes which contain at least one pole at the origin are known as integrating systems. The process output varies continuously with time at certain speed when they are disturbed from the equilibrium operating point by any environment disturbance/change in input conditions and thus they are considered as non-self-regulating. In most occasions this phenomenon is very disadvantageous and dangerous. Therefore it is always a challenging task to efficient control such kind of processes. Depending upon the number of poles present at the origin and also on the location of other poles in transfer function different types of integrating systems exist. Stable first order plus time delay systems with an integrator (FOPTDI), unstable first order plus time delay systems with an integrator (UFOPTDI), pure integrating plus time delay (PIPTD) systems and double integrating plus time delay (DIPTD) systems are the classifications of integrating systems. By using a well-controlled positioning stage the advances in micro and nano metrology are inevitable in order satisfy the need to maintain the product quality of miniaturized components. As proportional-integral-derivative (PID) controllers are very simple to tune, easy to understand and robust in control they are widely implemented in many of the chemical process industries. In industries this PID control is the most common control algorithm used and also this has been universally accepted in industrial control. In a wide range of operating conditions the popularity of PID controllers can be attributed partly to their robust performance and partly to their functional simplicity which allows engineers to operate them in a simple, straight forward manner. One of the accepted control algorithms by the process industries is the PID control. However, in order to accomplish high precision positioning performance and to build a robust controller tuning of the key parameters in a PID controller is most inevitable. Therefore, for PID controllers many tuning methods are proposed. the main factors that lead to lifetime reduction in gain loss of PID parameters are described in This paper and also the main methods used for gain tuning based on optimization approach analysis is reviewed. The advantages and disadvantages of each one are outlined and some future directions for research are analyzed.


Sign in / Sign up

Export Citation Format

Share Document