The Effect of Temperature on Lithium-Ion Battery Energy Efficiency With Graphite/LiFePO4 Electrodes at Different Nominal Capacities

Author(s):  
Ashkan Nazari ◽  
Roja Esmaeeli ◽  
Seyed Reza Hashemi ◽  
Haniph Aliniagerdroudbari ◽  
Siamak Farhad

In this work, the energy efficiency of the lithium-ion batteries (LIB) with graphite anode and LiFePO4 cathode (G/LFP) at different nominal capacities and charge/discharge rates is studied through multiphysics modeling and computer simulation. After characterizing all the heat generation sources in the cell, the total heat generation in LIBs is calculated and the charge/discharge efficiency plots at different temperatures are obtained. Since G/LFP LIBs have a wide range of applications in passenger and commercial electric vehicles (EVs), the result of this study assist engineer toward more efficient battery pack design.

2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Arash Nazari ◽  
Soheil Kavian ◽  
Ashkan Nazari

Abstract The new generation of lithium-ion batteries (LIBs) possesses considerable energy density that arise the safety concern much more than before. One of the main issues associated with LIB safety is the heat generation and thermal runaway in LIBs. The importance of characterizing the heat generation in LIBs is reflected in numerous studies. The heat generation in LIBs can be related to energy efficiency as well. In this work, the heat generation in LIB is predicted using two different approaches (physics-based and machine learning-based approaches). A validated multiphysics-based and neural network-based models for commercial LIBs with lithium iron phosphate/graphite (LFP/G), lithium manganese oxide/graphite (LMO/G), and lithium cobalt oxide/graphite (LCO/G) electrodes are used to predict the heat generation toward shaping the LIB energy efficiency contours, illustrating the effect of the nominal capacity as a key parameter in the manufacturing process of the LIBs. The developed contours can provide the energy systems designers a comprehensive view over the accurate efficiency of LIBs when they need to incorporate LIBs into their devices. In addition, the effect of temperature on charge/discharge energy efficiency of LFP/graphite LIBs is obtained, and the performance of three typical LIBs in the market at a very low temperature is compared, which have a wide range of applications from consumer applications such as electric vehicles (EVs) to industrial applications such as uninterruptible power sources (UPSes).


Author(s):  
Krishnashis Chatterjee ◽  
Pradip Majumdar ◽  
David Schroeder ◽  
S. Rao Kilaparti

In the recent years, with the rapid advancements made in the technologies of electric and hybrid electric vehicles, selecting suitable batteries has become a major factor. Among the batteries currently used for these types of vehicles, the lithium-ion battery leads the race. Apart from that, the energy gained from regenerative braking in locomotives and vehicles can be stored in batteries for later use for propulsion thus improving the fuel consumption and efficiency. But batteries can be subjected to a wide range of temperatures depending upon the operating conditions. Thus, a thorough knowledge of the battery performance over a wide range of temperatures and different load conditions is necessary for their successful employment in future technologies. In this context, this study aims to experimentally analyze the performance of Li-ion batteries by monitoring the charge–discharge rates, efficiencies, and energy storage capabilities under different environmental and load conditions. Sensors and thermal imaging camera were used to track the environment and battery temperatures, whereas the charge–discharge characteristics were analyzed using CADEX analyzer. The results show that the battery performance is inversely proportional to charge–discharge rates. This is because, at higher charge–discharge rates, the polarization losses increase thus increasing internal heat generation and battery temperature. Also, based on the efficiency and energy storage ability, the optimum performing conditions of the Li-ion battery are 30–40 °C (temperature) and 0.5 C (C-rate).


Author(s):  
Ashkan Nazari ◽  
Roja Esmaeeli ◽  
Seyed Reza Hashemi ◽  
Haniph Aliniagerdroudbari ◽  
Siamak Farhad

In this study, the low-temperature energy efficiency of lithium-ion batteries (LIBs) with different chemistries and nominal capacities at various charge and discharge rates is studied through multi-physics modeling and computer simulation. The model is based on the irreversible heat generation in the battery, leading to the charge/discharge efficiency in LIBs with graphite/LiFePO4, graphite/LiMn2O4, and graphite/LiCoO2 electrode materials in which the effects of the battery nominal capacity at various charge and discharge rates are studied. Using characterized sources of the heat generation in the LIB leads to providing a battery efficiency plot at different operation condition for each LIBs. The results of this study assist the battery engineers to have much more accurate prediction over the efficiency of the LIBs at low temperatures.


2015 ◽  
Vol 3 (40) ◽  
pp. 20267-20276 ◽  
Author(s):  
Rupesh Rohan ◽  
Kapil Pareek ◽  
Zhongxin Chen ◽  
Weiwei Cai ◽  
Yunfeng Zhang ◽  
...  

A polysiloxane based SIPE with grafted bis(sulfonyl)imide groups performs successfully in a temperature range of 25–80 °C with high charge–discharge rates.


2010 ◽  
Vol 25 (8) ◽  
pp. 1588-1594 ◽  
Author(s):  
Bin Liu ◽  
Da Deng ◽  
Jim Yang Lee ◽  
Eray S. Aydil

A simple and environmentally benign three-step hydrothermal method was developed for growing oriented single-crystalline TiO2-B and/or anatase TiO2 nanowire arrays on titanium foil over large areas. These nanowire arrays are suitable for use as the anode in lithium ion batteries; they exhibit specific capacities ranging from 200–250 mAh/g at charge-discharge rates of 0.3 C where 1 C is based on the theoretical capacity of 168 mAh/g. Batteries retain this capacity over as many as 200 charge-discharge cycles. Even at high charge-discharge rates of 0.9 C and 1.8 C, the specific capacities were 150 mAh/g and 120 mAh/g, respectively. These promising properties are attributed to both the nanometer size of the nanowires and their oriented alignment. The comparable electrochemical performance to existing technology, improved safety, and the ability to roll titanium foils into compact three-dimensional structures without additional substrates, binders, or additives suggest that these TiO2 nanowires on titanium foil are promising anode materials for large-scale energy storage.


2021 ◽  
Vol 4 (1) ◽  

Lithium – Ion batteries are now extensively used in electric vehicles (EV) as well as in renewable power generation applications for both on-grid and off grid storage. Some of the major challenges with batteries for electric vehicles are the requirement of high energy density, compatibility with high charge and discharge rates while maintaining high performance, and prevention of any thermal runaway conditions. The objective of this research is to develop a computer simulation model for coupled electrochemical and thermal analysis and characterization of a lithium-ion battery performance subject to a range of charge and discharge loading, and thermal environmental conditions. The electrochemical model includes species and charge transport through the liquid and solid phases of electrode and electrolyte layers along with electrode kinetics. The thermal model includes several heat generation components such as reversible, irreversible and ohmic heating, and heat dissipation through layers of battery cell. Simulation is carried out to evaluate the electrochemical and thermal behavior with varying discharge rates. Results demonstrated a strong variation in the activation and ohmic polarization losses as well as in higher heat generation rates. Results show variation of different modes and order of cell heat generation rates that results in a higher rate of cell temperature rise as battery cell is subjected to higher discharge rates. The model developed will help in gaining a comprehensive insights of the complex transport processes in a cell and can form a platform for evaluating number new candidates for battery chemistry for enhanced battery performance and address safety issues associated with thermal runaway.


Sign in / Sign up

Export Citation Format

Share Document