Energy Consumption Difference Analysis of Key Parameters Variations of 1000MW Ultra-Supercritical Double Reheat Coal-Fired Power Generation System

Author(s):  
Duan Liqiang ◽  
Sun Jing

Abstract This paper makes the energy consumption difference analysis of the key parameters variations of a 1000MW Ultra-Supercritical Double Reheat coal-fired power generation system. By applying the constant power variable condition calculation method for the steam turbine thermal system, the energy consumption difference analysis mode is established. The energy consumption difference of the key parameters variations (such as the main steam pressure, the main steam temperature and the exhaust steam pressure) of a 1000MW ultra-supercritical double reheat coal-fired power generation system at THA load, 75%THA load, 50%THA load and 40%THA load are investigated. The effects of the key parameter changes on the gross turbine heat rate and coal consumption rate at different working conditions are analyzed, as well as the corresponding energy consumption variation characteristic curves, and the variation rules of power generation efficiency are explored. In addition, the energy consumption difference variation rules of system at different working conditions are studied when any two key parameters such as the main steam temperature, main steam pressure, and the exhaust pressure change simultaneously. The research results show that within a certain range of variation, when the main steam temperature or the main steam pressure increase, or the exhaust gas pressure decreases, the energy consumption of the overall system drops. And with the reduction of load, the main steam temperature has the greatest influence on the coal consumption. By studying the effects of the simultaneous change of two key parameters on the energy consumption of the overall system, it is found that under the same load, the change of the exhaust gas pressure has the greatest influence on the system energy consumption. This paper will provide the theoretical guidance for the energy-saving diagnosis and operation optimization of ultra-supercritical double reheat coal-fired power generation system.

2011 ◽  
Vol 40 (5) ◽  
pp. 778-783 ◽  
Author(s):  
Sun-Kook Kim ◽  
Byeong-Cheol Won ◽  
Seok-Ho Rhi ◽  
Shi-Ho Kim ◽  
Jeong-Ho Yoo ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 998
Author(s):  
Zhiyu Zhang ◽  
Rongrong Zhai ◽  
Xinwei Wang ◽  
Yongping Yang

The main purpose of this paper is to quantitatively analyze the sensitivity of operating parameters of the system to the thermodynamic performance of an oxyfuel combustion (OC) power generation system. Therefore, the thermodynamic model of a 600 MW subcritical OC power generation system with semi-dry flue gas recirculation was established. Two energy consumption indexes of the system were selected, process simulation was adopted, and orthogonal design, range analysis, and variance analysis were used for the first time on the basis of single-factor analysis to conduct a comprehensive sensitivity analysis and optimization research on the changes of four operating parameters. The results show that with increasing oxygen purity, the net standard coal consumption rate first decreases and then increases. With decreasing oxygen concentration, the recirculation rate of dry flue gas in boiler flue gas ( χ 1 ) and an increasing excess oxygen coefficient, the net standard coal consumption rate increases. The net electrical efficiency was just the opposite. The sensitivity order of two factors for four indexes is obtained: the excess oxygen coefficient was the main factor that affects the net standard coal consumption rate and the net electrical efficiency. The influence of oxygen concentration and oxygen purity was lower than that of excess oxygen coefficient, and χ 1 has almost no effect.


2012 ◽  
Vol 512-515 ◽  
pp. 587-595 ◽  
Author(s):  
Jing Hui Song ◽  
Ze Hao Huang ◽  
Wei Min Kan ◽  
Zhi Gang Zhan ◽  
Yan Fen Liao ◽  
...  

Combined with practical operation of a biomass direct-fired power pant in South China, the whole life cycle of the process, including biomass growing, transportation, pretreatment, combustion power generation and power plant manufacturing are analyzed by means of LCA. The energy consumption and the impact on environment in each stage are also collected and calculated. The results show that 2182.32 MJ fossil energy is consumed to generate 104 kWh power. The total loading of the impact on environment is 13.45 PET2000and the mainly impact on environment is soot and ashes. Compared with coal-fired power, biomass direct-fired power plant can reduce 5282.87 kg CO2emissions during the process of generating 104 kWh power, which plays a positive part in mitigating greenhouse gases.


2013 ◽  
Vol 724-725 ◽  
pp. 990-998
Author(s):  
Zhen Chen ◽  
Wei Dou Ni

Coal and industrial waste heat synergetic utilization power generation system (the synergetic system) is proposed according to the energy cascade utilization principle. The industrial waste heat is used for feedwater heating of coal-fired power generation system to substitute steam extraction from steam turbine. The thermal performance of stand-alone waste heat power generation, stand-alone coal-fired power generation, and synergetic systems were studied, to compare the power generation capability of each system using heat balance method. The results show that the power generation capability of synergetic power generation system is larger than that of the two stand-alone systems. The equivalent and same grade waste heat synergized with higher-parameter, larger-capacity coal-fired power generation systems can generate more electricity than with the low-parameter ones; the high-parameter waste heat synergized with the higher-parameter and larger-capacity power generation systems can reach larger power generation capability. The multi-energy synergetic heating mode can greatly improve the comprehensive energy efficiency and reduce the coal consumption compared with the stand-alone energy heating mode.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1284
Author(s):  
Rongrong Zhai ◽  
Lingjie Feng ◽  
Hai Yu ◽  
Chao Li ◽  
Yongping Yang

This study investigates the multi-objective optimization of load dispatch of a solar-assisted coal-fired power generation system. The improved environmental/economic load dispatch model considers coal consumption, NOx emissions, and power purchase cost. The singular weighted method is utilized to solve this multi-objective and multi-constraint optimization problem. A power system that includes five power generators, one of which is retrofitted to a solar-assisted coal-fired unit, is also analyzed. It can be concluded that the loads of solar-assisted coal-fired units are higher than the original coal-fired unit, and with the increase of solar radiation, the gap between the loads of two units also increases. In addition, after retrofitting, the coal consumption, the NOx emission, and power costs of units reduce by about 2.05%, 0.45%, and 0.14%, respectively. From the study on the on-grid power tariff, where the tariff drops from 16.29 cents/kWh to 3.26 cents/kWh, NOx emissions drop from 12.31 t to 11.28 t per day, a reduction of about 8.38%. The cost of purchasing electricity decreases from $ 2,982,161.8 to $ 2,020,505.0 per day, a decrease of 32.25%. Therefore, when both coal-fired units and solar-assisted coal-fired units exist in a region, the use of solar-assisted coal-fired power generation units should be prioritized.


Author(s):  
Yoshinobu Nakao ◽  
Eiichi Koda ◽  
Toru Takahashi

We have developed a general-purpose software by which static thermal characteristics of a power generation system can be analyzed easily. This software has following notable features. - It has new algorithm that can solve non-linear simultaneous equations used in analyzing static thermal characteristics of various power generation systems, namely the heat and mass balance and the efficiency. - It has flexibility over setting calculation conditions. - It can be executed on a personal computer easily and quickly. We have ensured that it can produce the heat and mass balance diagrams of a nuclear power plant’s main steam system and then it can calculate power output and efficiency of the system. Furthermore, we have evaluated various measures to recover heat from steam generator blowdown water and proved that this software is a useful operation aid for planning effective changes in support of power stretch.


Author(s):  
Bong-Hyang Bae ◽  
Jeong L. Sohn ◽  
Sung Tack Ro

Performance analysis with detailed thermodynamic models of a power generation system based on the solid oxide fuel cell (SOFC) is presented. The proposed power system in this study is composed of an external reformer, a SOFC with an internal reformer, an afterburner, and preheaters. Natural gas (CH4) as supplied fuel to the SOFC is reformed to hydrogen (H2) by external and internal reformers. Necessary steam for the use in reformers is either externally supplied or internally recirculated from exit of the SOFC. Exhaust gas of the SOFC containing steam and other chemical compositions is combusted in afterburner to raise its temperature to preheat supplied fuel and air. It is found from the results of performance analysis that the system performance can be enhanced by the use of internally recirculated steam from the exhaust gas of the SOFC. It is also found that the benefit of the high-pressure operation is not so secure if the power to compress supplied air is consumed from the produced power of the system. Installation of a turbine at the system exhaust produces necessary power to pressurize supplied air and, additionally, extra power to enhance total power density of the system.


Sign in / Sign up

Export Citation Format

Share Document