A Comparison of Different Fluid-Structure Interaction Analysis Techniques for the Marine Propeller

2021 ◽  
Author(s):  
Wajiha Rehman ◽  
Stephane Paboeuf ◽  
Joseph Praful Tomy

Abstract The performance of the propeller is crucial to determine the energy-efficiency of a vessel. Fluid-Structure Interactions (FSI) analysis is one of the widely used methods to determine the hydrodynamic performance of marine propellers. This article is about the validation of a design assessment tool known as ComPropApp which is developed by Cooperative Research Ships (CRS) partners. ComPropApp is a specially designed tool for the FSI analysis of isotropic and composite marine propellers by doing explicit two-way coupling of the BEM-FEM solvers. The Boundary Element Method (BEM) solver of ComPropApp gives it an edge over Reynolds Averaged Navier Stokes Equations (RANSE) solvers in terms of computation time and cost. Hence, it is suitable for the initial design stage. The propeller used in this study is developed under the French Research Project; FabHeli. The validation is done by performing different types of FSI analysis through commercial RANSE solver (STAR-CCM+) and FEM solver (FEMAP) for only one inflow velocity of the open water case which is 10.3 m/s. The fluid solver of ComPropApp (PROCAL) is a Boundary Element Method (BEM) solver that is based on the potential flow theory while the structural solver (TRIDENT) is a FEM solver. The study is divided into four different cases; BEM-FEM one-way coupled FSI analysis, RANSE-FEM one-way coupled FSI analysis, BEM-FEM explicit two-way coupled FSI analysis with ComPropApp and RANSE-FEM implicit two-way coupled FSI analysis with STAR-CCM+. The calculated values of stresses, displacement, and forces from all the methods are compared and the conclusion is drawn.

2004 ◽  
Vol 48 (01) ◽  
pp. 15-30
Author(s):  
Hanseong Lee ◽  
Spyros A. Kinnas

Most marine propellers operate in nonaxisymmetric inflows, and thus their blades are often subject to an unsteady flow field. In recent years, due to increasing demands for faster and larger displacement ships, the presence of blade sheet and tip vortex cavitation has become very common. Developed tip vortex cavitation, which often appears together with blade sheet cavitation, is known to be one of the main sources of propeller-induced pressure fluctuations on the ship hull. The prediction of developed tip vortex cavity as well as blade sheet cavity is thus quite important in the assessment of the propeller performance and the corresponding pressure fluctuations on the ship hull. A boundary element method is employed to model the fully unsteady blade sheet (partial or supercavitating) and developed tip vortex cavitation on propeller blades. The extent and size of the cavity is determined by satisfying both the dynamic and the kinematic boundary conditions on the cavity surface. The numerical behavior of the method is investigated for a two-dimensional tip vortex cavity, a three-dimensional hydrofoil, and a marine propeller subjected to nonaxisymmetric inflow. Comparisons of numerical predictions with experimental measurements are presented.


2019 ◽  
Vol 7 (9) ◽  
pp. 321 ◽  
Author(s):  
Abouzar Ebrahimi ◽  
Mohammad Saeed Seif ◽  
Ali Nouri-Borujerdi

Noise generated by ships is one of the most significant noises in seas, and the propeller has a significant impact on the noise of ships, which reducing it can significantly lower the noise of vessels. In this study, a genetic algorithm was used to optimize the hydro-acoustic and hydrodynamic performance of propellers. The main objectives of this optimization were to reduce the propeller noise and increase its hydrodynamic efficiency. Modifying the propeller geometry is one of the most effective methods for optimizing a propeller performance. One of the numerical methods for calculating propeller noise is the Ffowcs Williams and Hawkings (FW-H) Model. A numerical code was developed by authors which solved these equations using the velocity and pressure distribution around the propeller and calculated its noise. To obtain flow quantities and to investigate the hydrodynamic performance of the propeller, a code was developed using a Boundary Element Method, the panel method. The geometry of DTMB 4119 propeller was selected for optimization, where geometric modifications included skew angle, rake angle, pitch to diameter (P/D) distribution, and chord to diameter (c/D) distribution. Finally, the results of geometric optimization were presented as Pareto optimal solutions. The results indicated that the optimum geometries had rake angles between 8.14 and 12.05 degrees and skew angles between 31.52 and 39.74 degrees. It was also observed that the increase in the chord up to a specific limit enhanced the efficiency and reduced the noise of the propeller.


2011 ◽  
Vol 18 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Hassan Ghassemi ◽  
Ehsan Yari

The Added Mass Coefficient computation of sphere, ellipsoid and marine propellers using Boundary Element Method Added mass is an important and effective dynamic coefficient in accelerating, non uniform motion as a result of fluid accelerating around a body. It plays an important role, especially in vessel roll motion, control parameters as well as in analyzing the local and global vibration of a vessel and its parts like propellers and rudders. In this article, calculating the Added Mass Coefficient has been examined for a sphere, ellipsoid, marine propeller and hydrofoil; using numerical Boundary Element Method. Since an Ellipsoid and a sphere have simple geometric shapes and the Analytical values of their added mass coefficients are available, so that the results of added mass matrix are obtained and evaluated, using the boundary element method. Then the added mass matrix is computed in a given geometrical and flow specifications for a specific propeller and its results are studied versus experimental results, which it's current numerical data In comparison with other numerical methods has a good conformity with experimental results. The most important advantage of the method in determining the added mass matrix coefficients for the surface and underwater vessels and the marine propellers is extracting all the added mass coefficients with very good Accuracy, while in other numerical methods it is impossible to extract all the coefficients with the Desired Accuracy.


2007 ◽  
Author(s):  
Jure Ravnik ◽  
Leopold Škerget ◽  
Zoran Žunič ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document