Validation of Constraint Based Methodology in Structural Integrity – VOCALIST: Project Overview

Author(s):  
David Lidbury ◽  
Richard Bass ◽  
Elisabeth Keim ◽  
Surender Bhandari ◽  
David Connors ◽  
...  

VOCALIST (Validation of Constraint Based Methodology in Structural Integrity) is a shared cost action project co-financed by the European Commission under the Fifth Framework of the European Atomic Energy Community (EURATOM). The motivation for VOCALIST is based on the observation that the pattern of crack-tip stresses and strains causing plastic flow and fracture in components is different to that in test specimens. This gives rise to the so-called constraint effect. Crack-tip constraint in components is generally lower than in test specimens. Effective toughness is correspondingly higher. The fracture toughness measured on test specimens is thus likely to underestimate that exhibited by cracks in components. The purpose of VOCALIST is to develop validated models of the constraint effect, and associated best practice advice, with the objective of achieving (i) an improved defect assessment methodology for predicting safety margins; (ii) improved lifetime management arguments. The work is intended to be of benefit to both plant operators and their regulators. The project started in October 2000 and will run for thirty-six months. The main achievements to date are as follows: • Identification and assessment of current issues affecting the application of constraint-based fracture assessment methods in practical situations. • Materials selection and identification of test matrices. • Initiation of characterisation testing. • Detailed definition of analytical programme and alignment with experimental programme. • Definition of test conditions for Benchmark and Features tests. • Procurement and execution of Benchmark tests. • Procurement and execution of scoping Features tests. This paper provides an overview of VOCALIST, describes its various Work Packages, and provides an up-to-date summary of progress as the project reaches mid-term.

Author(s):  
David Lidbury

VOCALIST (Validation of Constraint Based Methodology in Structural Integrity) is a shared cost action project co-financed by the European Commission under the Fifth Framework of the European Atomic Energy Community (EURATOM). The motivation for VOCALIST is based on the observation that the pattern of crack-tip stresses and strains causing plastic flow and fracture in components is different to that in test specimens. This gives rise to the so-called constraint effect. Crack-tip constraint in components is generally lower than in test specimens. Effective toughness is correspondingly higher. The fracture toughness measured on test specimens is thus likely to underestimate that exhibited by cracks in components. The purpose of VOCALIST is to develop validated models of the constraint effect, and associated best practice advice, with the objective of achieving (i) an improved defect assessment methodology for predicting safety margins; (ii) improved lifetime management arguments. The work is intended to be of benefit to both plant operators and their regulators. The project started in October 2000 and all experimental and analytical work was completed by February 2004. The final report and an updated Best Practice Handbook are currently being prepared. This paper provides an overview of VOCALIST, describes its various Work Packages, and provides an up-to-date summary of results.


Author(s):  
P. James ◽  
M. Jackson ◽  
P. Birkett ◽  
C. Madew

Defect tolerance assessments are carried out to support the demonstration of structural integrity for high integrity components such as nuclear reactor pressure vessels. These assessments often consider surface-breaking defects and assess Stress Intensity Factors (SIFs) at both the surface and deepest points. This can be problematic when there is a high stress at the surface, for example due to the stress concentration at the root of a screw thread. In the past this has led to the development of complex and costly 3D finite element analyses to calculate more accurate SIFs, and still resulting in small apparent limiting defect sizes based on initiation at the surface point. Analysis has been carried out along with supporting materials testing, to demonstrate that the increased SIF at the surface point is offset by a reduction in crack-tip constraint, such that the material exhibits a higher apparent fracture toughness. This enables a more simplistic assessment which reduces the effective SIF at the surface such that only the SIF at the deepest point needs to be considered. This then leads to larger calculated limiting defect sizes. This in turn leads to a more robust demonstration of structural integrity, as the limiting defect sizes are consistent with the capability of non-destructive examination techniques. The high SIF at the surface location, and the concomitant reduction in crack-tip constraint, meant that it was not possible to demonstrate the material response with conventional tests, such as those using shallow-notched bend specimens. Instead it was necessary to develop modified specimens in which semielliptical defects were introduced into a geometry which replicated the notch acuity at the root of a screw thread. These feature tests were used to demonstrate the principle, prior to testing with more conventional specimens to fit more accurately the parameters required to represent the material response in a defect tolerance assessment. Margins in defect tolerance assessments are usually measured against the initiation of tearing, even though the final failure for the material may occur at a higher load following stable crack extension. This work measured and assessed the benefit of reduced crack-tip constraint on both the point of initiation and on the development of the tearing resistance curve. This demonstrated that the effect of constraint was valid with tearing for this material and that there was additional margin available beyond the onset of tearing. The feature test geometry also provided evidence of the tearing behaviour at the surface and deepest points of a surrogate component under representative loading. This paper provides an overview of the range of tests performed and the post-test interpretation performed in order to provide the R6 α and k constraint parameters.


Author(s):  
X. Wang ◽  
R. Bell ◽  
S. B. Lambert

The loss of crack tip constraint leads to enhanced resistance to both cleavage and ductile tearing. However, conventional failure assessment schemes (CEGB-R6, BS-7910) use lower bound toughness obtained from highly constrained test specimens. Cracks in many real engineering structures are not highly constrained, which makes failure predictions using conventional failure assessment schemes based on lower bound fracture toughness values overly pessimistic. Excessive pessimism in the structural assessment can lead to unwarranted repair or decommissioning of structures, and thus cause unneeded cost and inconvenience. Recent developments on constraint-based fracture mechanics have enabled the practical assessment of defective components including the constraint effect. For example, the recent revision of R6 and the newly developed structural integrity assessment procedures for European industry (SINTAP) have suggested a framework for failure assessments including the constraint effect. In this paper, the constraint-based failure assessment of surface cracked T-plate welded joints under tension load is presented. Different issues including the constraint-based failure assessment diagrams, the treatment of combining primary and the secondary loads, and the calculation of stress intensity factors, limit loads and constraint parameters for surface cracked T-plate joints are discussed. It is demonstrated that when the lower constraint effect is properly accounted for, the maximum allowable tensile stress level increases substantially.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Guian Qian ◽  
Markus Niffenegger

The integrity of a reactor pressure vessel (RPV) related to pressurized thermal shocks (PTSs) has been extensively studied. This paper introduces the method of using fracture mechanics for the integrity analysis of a RPV subjected to PTS transients. A 3-D finite element (FE) model is used to perform thermal and fracture mechanics analyses by considering both elastic and elastic–plastic material models. The results show that the linear elastic analysis leads to a more conservative result than the elastic–plastic analysis. The variation of the T-stress and Q-stress (crack tip constraint loss) of a surface crack in a RPV subjected to PTSs is studied. A shallow crack is assumed in the RPV and the corresponding constraint effect on fracture toughness of the material is quantified by the K–T method. The safety margin of the RPV is larger based on the K–T approach than based only on the K approach. The J–Q method with the modified boundary layer formulation (MBL) is used for the crack tip constraint analysis by considering elastic–plastic material properties. For all transient times, the real stress is lower than that calculated from small scale yielding (SSY) due to the loss of crack tip constraint.


Author(s):  
Jin-Ho Je ◽  
Dong-Jun Kim ◽  
Keun-Hyung Bae ◽  
Yun-Jae Kim

In the presence of excessive plasticity, the fracture toughness depends on the size and geometry. For material under fully yielded conditions, the stresses near the crack tip are not unique, but depend on geometry. So Single-parameter; J-approach is limited to high-constraint crack geometry. J-Q theory has been proposed in order to decide crack geometry constraint. This approach assumes that the crack-tip fields have two degrees of freedom. In this paper, based on J-Q theory, crack-tip stress field of fully circumferential cracked pipe under combined load is investigated using FE analysis. Combined loads are tensile axial force and thermal gradient of radial direction. Q-stresses of a crack geometry and it’s loading state are used to determine constraint effect, and give a characteristic order for crack-tip constraint.


Author(s):  
X. Wang ◽  
W. Reinhardt

Conventional failure assessment schemes (CEGB-R6, BS-7910) use a lower bound toughness obtained from highly constrained test specimens. A lower crack tip constraint leads to enhanced resistance to both cleavage and ductile tearing. The cracks in many real engineering structures are not highly constrained, which makes failure predictions using conventional failure assessment schemes based on the lower bound fracture toughness overly conservative. Too much conservatism in the structural assessment can lead to unwarranted repair or decommissioning of structures, and thus cause unnecessary cost and inconvenience. Due to recent developments in constraint-based fracture mechanics, it is important to include the constraint effect in the practical assessment of defective components. For example, the recent revision of R6 and the newly developed structural integrity assessment procedures for European industry (SINTAP) have suggested a framework for failure assessments that can take the constraint effect into account. In this paper, the constraint-based failure assessment of a surface cracked welded plate under uniaxial tension load is presented. A constraint-based failure assessment diagram and a method for combining primary and the secondary loads are discussed. Finite element based correlations are used to calculate the stress intensity factors, and constraint parameters, while the limit loads are derived from existing closed form approximations. It is demonstrated that when the lower constraint effect is properly accounted for, the maximum allowable tensile stress level can increase 15% or more.


1995 ◽  
Vol 117 (4) ◽  
pp. 395-398 ◽  
Author(s):  
T.-J. Wang ◽  
Z.-B. Kuang

Micromechanics approach is employed to investigate the constraint effect on post-yield fracture toughness. Relationships between the conventional post-yield fracture toughness values, J1c and δc, and crack tip constraint characterized by the crack tip stress triaxiality are derived on the basis of an improved micromechanics criterion for ductile fracture. Then, new crack tip parameters Jmc and δmc (and associated new criteria for ductile fracture) are proposed, in which the effects of crack tip deformation and constraint are taken into account. Experiments show that both Jmc and δmc are material constant independent of stress state or specimen geometry. They can serve as new post-yield fracture toughness parameters to differentiate the fracture toughness of engineering materials, which provide new approaches for fracture assessments of engineering structures.


Sign in / Sign up

Export Citation Format

Share Document