Fatigue Life Prediction for Short Dents in Petroleum Pipelines

Author(s):  
Adam J. Rinehart ◽  
Peter B. Keating

Pipeline dent fatigue behavior has been shown to be strongly dependent upon dent length and external force dent restraint characteristics. Full-scale laboratory tests have shown that short dents that are unrestrained by an external force typically experience fatigue cracking in the dent periphery outside of the dent contact region. A fatigue life prediction method for short dents is presented here. In order to assess method accuracy, predictions are made for cases in which fatigue life has been measured experimentally. The predictions account for both crack initiation life and crack propagation life. Stress concentration values used in the predictions are determined using finite element modelling on a case-by-case basis for comparison purposes. Appropriate crack initiation life estimates, stress intensity factor predictions, and crack propagation models are taken from existing literature. Predicted and measured fatigue lives are compared for the cases studied.

Author(s):  
Masao Itatani ◽  
Keisuke Tanaka ◽  
Isao Ohkawa ◽  
Takehisa Yamada ◽  
Toshiyuki Saito

Fatigue tests of smooth and notched round bars of austenitic stainless steels SUS316NG and SUS316L were conducted under cyclic tension and cyclic torsion with and without static tension. Fatigue strength under fully reversed (R=−1) cyclic tension once increased with increasing stress concentration factor up to Kt=1.5, but it decreased from Kt=1.5 to 2.5. Fatigue life increased with increasing stress concentration under pure cyclic torsion, while it decreased with increasing stress concentration under cyclic torsion with static tension. From the measurement of fatigue crack initiation and propagation lives using electric potential drop method, it was found that the crack initiation life decreased with increasing stress concentration and the crack propagation life increased with increasing stress concentration under pure cyclic torsion. Under cyclic torsion with static tension, the crack initiation life also decreased with increasing stress concentration but the crack propagation life decreased or not changed with increasing stress concentration then the total fatigue life of sharper notched specimen decreased. It was also found that the fatigue life of smooth specimen under cyclic torsion with static tension was longer than that under pure cyclic torsion. This behavior could be explained based on the cyclic strain hardening under non-proportional loading and the difference in crack path with and without static tension.


Author(s):  
Felipe F. Camargo ◽  
Kamilla Vasconcelos ◽  
Liedi L. Bernucci

Fatigue cracking and rutting are among the major types of distresses to be considered in flexible pavement design. In this context, the choice of the asphalt binder plays a major role in both the fatigue behavior and permanent deformation resistance of the asphalt mixture. This study was conducted to assess the permanent deformation and fatigue behavior of a field-blended rubber-asphalt (CRMA) and compare the results with typical binders used in Brazil. The neat binder used for modification was also employed as a control and as a base for polymer modification (SBSA). The binders were evaluated using the multiple stress creep and recovery (MSCR) for permanent deformation behavior, and the time sweep (TST) and linear amplitude sweep (LAS) tests for fatigue behavior. Modification of the neat binder resulted in an increase in percentage recovery in the MSCR, whereas the percentage recovery for CRMA was the highest among the three binders at any given temperature. The non-recoverable creep compliance for the CRMA was lower than that exhibited by the neat and SBSA binders for both stress levels for the range of temperatures tested. Binder modification resulted in an improved fatigue behavior compared with the neat binder according to the TST and LAS, whereas rubber modification resulted in the best fatigue behavior. Fatigue life prediction by TST was consistently higher than fatigue life prediction in the LAS test, probably because different criteria were used for determining failure in each test (ranking of the binders remained constant regardless of the criteria used).


Author(s):  
Muhammad A. Wahab ◽  
Vinay Raghuram

Friction-Stir-Welding (FSW) has been adopted as a major process for welding Aluminum aerospace structures. AA-2195 is one of the new generations Aluminum alloy (Al-Li) that has been used on the new super lightweight external tank of the space shuttle. The Lockheed Martin Space Systems (LMSS), Michaud Operations in New Orleans is continuously pursuing FSW technologies in its efforts to advance fabrication of the external tanks of the space shuttle. The future launch vehicles which will have to be reusable, mandates the structure to have good fatigue properties, which prompts an investigation into the fatigue behavior of the friction-stir-welded aerospace structures. The butt-joint specimens of Al-2195 are fatigue tested according to ASTM-E647. The effect of Stress ratios, Corrosion-Preventive-Compound (CPC), and periodic Overloading on fatigue life is investigated. Scanning Electron Microscopy (SEM) is used to examine the failure surfaces and examine the different modes of crack propagation i.e. tensile, shear, and brittle modes. It is found that fatigue life increases with the increase in stress ratio, the fatigue life increases from 30–38% with the use of CPC, the fatigue life increases 8–12 times with periodic overloading; crack closure phenomenon dominates the fatigue facture. Numerical Analysis using FEA has also been used to model fatigue life prediction scheme for these structures, the interface element technique with critical bonding strength criterion for formation of the new surfaces has been used to model crack propagation. The fatigue life predictions made using this method are within the acceptable ranges of 10–20% of the experimental fatigue life. This method overcomes the limitation of the traditional node-release scheme and closely follows the physics of crack propagation.


2011 ◽  
Vol 197-198 ◽  
pp. 1400-1405
Author(s):  
Zan Zhi Wang

35CrMo and 42CrMo are the two main structural alloy steels in China, and are widely used in making important structural components subjected to heavy loads. In order to search after their fatigue properties under cyclic loads, 33 specimens were tested, under different stress level and different stress ratio from each other, to observe their crack initiation lives and the failure lives, together with the growing short crack lengths at various cycles. All tests were conducted using the MTS 810-22 material testing system. Based on the results from the tests, the relationships between the maximum stress range at crack tip and the number of cycles prior to crack initiation were determined, and in the meanwhile, the small crack propagation laws and the threshold stresses for fatigue crack initiation were obtained. In the end, the fatigue life prediction method for the two structural alloy steels was carried out.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401881101 ◽  
Author(s):  
Yaliang Liu ◽  
Yibo Sun ◽  
Yang Sun ◽  
Hongji Xu ◽  
Xinhua Yang

Spot welding of dissimilar materials can utilize the respective advantage comprehensively, of which reliable prediction of fatigue life is the key issue in the structure design and service process. Taking into account almost all the complex factors that have effects on the fatigue behavior such as load level, thickness, welding nugget diameter, vibrational frequency, and material properties, this article proposed an energy dissipation-based method that is able to predict the fatigue life for spot-welded dissimilar materials rapidly. In order to obtain the temperature gradient, the temperature variations of four-group spot-welded joint of SUS301 L-DLT stainless steel and Q235 carbon steel during high-cycle fatigue tests were monitored by thermal infrared scanner. Specifically, temperature variation disciplines of specimen surface were divided into four stages: temperature increase, temperature decrease, continuous steady increase in temperature, and ultimate drop after the fracture. The material constant C that a spot-welded joint of dissimilar material needs to reach fracture is 0.05425°C·mm3. When the specimen was applied higher than the fatigue limit, the highest error between experimental values and predicted values is 18.90%, and others are lower than 10%. Therefore, a good agreement was achieved in fatigue life prediction between the new method and the validation test results.


2011 ◽  
Vol 361-363 ◽  
pp. 1669-1672
Author(s):  
Wen Xiao Zhang ◽  
Guo Dong Gao ◽  
Guang Yu Mu

The low cycle fatigue behavior was experimentally studied with the 3-dimension notched LD8 aluminum alloy specimens at 300°C. The 3- dimension stress-strain responses of specimens were calculated by means of the program ADINA. The multiaxial fatigue life prediction was carried out according to von Mises’s equivalent theory. The results from the prediction showed that the equivalent strain range can be served as the valid mechanics for predicting multiaxial high temperature and low cyclic fatigue life.


Author(s):  
Adam J. Rinehart ◽  
Peter B. Keating

A full scale experimental study has demonstrated that long, unrestrained pipeline dents typically experience fatigue cracking in the dent contact region and have significantly shorter fatigue lives compared to other dent types studied. Furthermore, these dents often fully reround under normal pipeline operating pressures, making them difficult to reliably detect and assess using existing depth-based approaches. Several conditions unique to the dent contact region accelerate fatigue damage accumulation and are considered in a case-specific long dent fatigue life prediction method. First, the contact region develops significant bending stresses that contribute to a higher rate of fatigue crack growth. Second, history dependent, thru-thickness residual bending stresses that may have a significant influence on fatigue behavior are present in the contact region as a result of plastic deformation associated with dent formation and subsequent rebounding. A method for predicting the fatigue life of long dents that accounts for these factors is presented here and is used to analyze specific cases for which laboratory data is available. Nonlinear finite element modelling of the dent life cycle, including the indentation and rebounding phases, is used to determine local stress range behaviors and residual stress distributions. The application of appropriate fracture mechanics based models of fatigue is discussed and demonstrated. Fatigue life predictions are made on a case by case basis for situations studied in the laboratory so that the validity and accuracy of the approach presented here may be studied.


Sign in / Sign up

Export Citation Format

Share Document