Flaw Growth Prediction and Fitness-for-Service Assessment of a PWR Nuclear Plant Steam Generator U-Tube

Author(s):  
Robert S. Vecchio ◽  
Sri K. Sam Sinha

Primary water stress corrosion cracking (PWSCC) continues to be a dominant degradation mechanism affecting the service life of steam generators in several operating pressurized water reactor (PWR) nuclear plants. Recently, in one operating nuclear plant, a steam generator U-tube ruptured catastrophically while the unit was on-line. Although the plant operators were able to shutdown the reactor without significant release of radiation, the Nuclear Regulatory Commission (NRC) and the owner utility launched a full-scale investigation of the incident. The owner utility requested that a crack growth analysis and engineering evaluation of the tube rupture be performed, as well as assess the fitness-for-service of the generator for continued operation. This paper presents a summary of elastic-plastic finite element and fracture mechanics analyses performed for a steam generator U-tube, subjected to crack initiation at the inner diameter of the tube in the apex region. Residual stresses were computed from a finite element model of the tube simulating the mechanical bending process with the use of an anvil. Fracture mechanics and crack growth evaluations were performed to predict the time required for a pre-existing flaw at the inside diameter of the tube to propagate through-wall. Additionally, a fitness-for service assessment was performed in order to permit a degraded tube to remain in service, given an initial flaw size as determined by nondestructive examination.

Author(s):  
Matthew Kerr ◽  
Howard J. Rathbun

The U.S. Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute (EPRI) are working cooperatively under an addendum to the ongoing memorandum of understanding to validate welding residual stress (WRS) predictions in pressurized water reactor (PWR) primary cooling loop components containing dissimilar metal (DM) welds. These stresses are of interest as DM welds in PWRs are susceptible to primary water stress corrosion cracking (PWSCC) and tensile weld residual stresses are the primary driver of this degradation mechanism. The NRC/EPRI weld residual stress (WRS) analysis validation program consists of four phases, with each phase increasing in complexity from laboratory size specimens to component mock-ups and ex-plant material. This paper focuses on Phase 2 of the WRS program that included an international Finite Element (FE) WRS round robin and experimental residuals stress measurements using the Deep Hole Drill (DHD) method on pressurizer surge nozzle mock-up. Characterizing variability in the round robin data set is difficult, as there is significant scatter in the data set and the WRS profile is dependent on the form of the material hardening law assumed. The results of this study show that, on average, analysts can develop WRS predictions that are a reasonable estimate for actual configurations as quantified by measurements. Sensitivity studies assist in determining which input parameters provide significant impact on WRSs, with thermal energy input, post-yield stress-strain behavior, and treatment of strain hardening have the greatest impact on DM WRS distributions.


2012 ◽  
Vol 44 (1) ◽  
pp. 35-43 ◽  
Author(s):  
F. Dubois ◽  
R. Moutou-Pitti ◽  
B. Picoux ◽  
C. Petit

2019 ◽  
pp. 147592171986572
Author(s):  
Chang Qi ◽  
Yang Weixi ◽  
Liu Jun ◽  
Gao Heming ◽  
Meng Yao

Fatigue crack propagation is one of the main problems in structural health monitoring. For the safety and operability of the metal structure, it is necessary to monitor the fatigue crack growth process of the structure in real time. In order to more accurately monitor the expansion of fatigue cracks, two kinds of sensors are used in this article: strain gauges and piezoelectric transducers. A model-based inverse finite element model algorithm is proposed to perform pattern recognition of fatigue crack length, and the fatigue crack monitoring experiment is carried out to verify the algorithm. The strain spectra of the specimen under cyclic load in the simulation and experimental crack propagation are obtained, respectively. The active lamb wave technique is also used to monitor the crack propagation. The relationship between the crack length and the lamb wave characteristic parameter is established. In order to improve the recognition accuracy of the crack propagation mode, the random forest and inverse finite element model algorithms are used to identify the crack length, and the Dempster–Shafer evidence theory is used as data fusion to integrate the conclusion of the two algorithms to make a more accountable and correct judge of the crack length. An experiment has been conducted to demonstrate the effectiveness of the method.


2004 ◽  
Vol 261-263 ◽  
pp. 687-692 ◽  
Author(s):  
Ahmad Kamal Ariffin ◽  
Syifaul Huzni ◽  
Nik Abdullah Nik Mohamed ◽  
Mohd Jailani Mohd Nor

The implementation of inter-element model to simulate crack propagation by using finite element analysis with adaptive mesh is presented. An adaptive finite element mesh is applied to analyze two-dimension elastoplastic fracture during crack propagation. Displacement control approach and updated Lagrangean strategy are used to solve the non-linearity in geometry, material and boundary for plane stress crack problem. In the finite element analysis, remeshing process is based on stress error norm coupled with h-version mesh refinement to find an optimal mesh. The crack is modeled by splitting crack tip node and automatic remeshing calculated for each step of crack growth. Crack has been modeled to propagate through the inter-element in the mesh. The crack is free to propagates without predetermine path direction. Maximum principal normal stress criterion is used as the direction criteria. Several examples are presented to show the results of the implementation.


Fracture mechanics analyses are an important part of nuclear plant design, supplementing the conventional design protection against failure to cover the possibility of the presence of crack-like defects. The degree of detail and accuracy required for a particular application depends on the possible consequences of a failure and whether the assessment is concerned with plant safety or with aspects of reliability. In the former case, a conservative approach is necessary and the prevention of initiation is the usual criterion. This approach is typified by the safety assessment applied to pressurized water reactor pressure vessels, which is outlined and discussed in relation to elastic plastic approaches and the importance of plant transient conditions, material properties (especially in weldments) and possible defect distributions. Fracture mechanics can help in defining quality control and quality assurance procedures, including both requirements for mechanical property appraisal and nondestructive testing. The latter aspects extend into operation, in respect of monitoring of plant conditions, surveillance of changes in material properties and the use of periodic inspection and plant condition monitoring techniques. A number of examples are quoted and recommendations made to permit improved fracture mechanics assessments.


2009 ◽  
Vol 16 (6) ◽  
pp. 637-646 ◽  
Author(s):  
Young W. Kwon ◽  
Joshua H. Gordis

Quasi-static crack growth in a composite beam was modeled using the structural synthesis technique along with a finite element model. The considered crack was an interface crack in the shear mode (i.e. mode II), which occurs frequently in the scarf joint of composite structures. The analysis model was a composite beam with an edge crack at the midplane of the beam subjected to a three-point bending load. In the finite element model, beam finite elements with translational degrees of freedom only were used to model the crack conveniently. Then, frequency domain structural synthesis (substructure coupling) was applied to reduce the computational time associated with a repeated finite element calculation with crack growth. The quasi-static interface crack growth in a composite beam was predicted using the developed computational technique, and its result was compared to experimental data. The computational and experimental results agree well. In addition, the substructure-based synthesis technique showed the significantly improved computational efficiency when compared to the conventional full analysis.


2011 ◽  
Vol 415-417 ◽  
pp. 2298-2303
Author(s):  
Jing Yu Zhai ◽  
Ying Yang ◽  
Qing Kai Han

Rubber shock absorbers are the key parts to isolate vibrations of the machinery and equipment. In this paper, a three dimensional finite element model of a rubber shock absorber is established; then the computation of three dimensional fatigue crack growth rates are discussed by using the nonlinear finite element method. The stress distribution which can determine the initial crack location and the possible risk surface under dynamic loads is obtained. The three dimensional crack growth is simulated by using finite element method and linear elastic fracture mechanics. A brittle fracture process of the rubber shock absorber along the dangerous surface is simulated by using the cohesive element of ABAQUS.


2021 ◽  
Author(s):  
Kevin K. L. Wong ◽  
Garivalde Dominguez ◽  
Do Jun Shim ◽  
Steven K. Richter

Abstract A probabilistic fracture mechanics (PFM) evaluation was performed for the nozzle blend radius and nozzle-to-shell weld of a boiling water reactor (BWR) feedwater nozzle using the PFM methodology in Electric Power Research Institute (EPRI) Boiling Water Reactor Vessel and Internals Program (BWRVIP) BWRVIP-108-A and BWRVIP-241-A, which are the technical basis for inspection relief in ASME Code Case N-702. Using a finite element model of the feedwater nozzle, stress analysis was performed for plant-specific piping loads and bounding transients, which were grouped by severity and projected cycle counts. Monte Carlo simulations were performed using the VIPER-NOZ (Vessel Inspection Program Evaluation for Reliability, including Nozzle) PFM software to determine probabilities of failure for the reactor pressure vessel (RPV) with an inspection population of 25% of the feedwater nozzles every ten years for sixty years of plant operation. The results show that the probabilities of failure for normal operation and low temperature over pressure (LTOP) event meet the acceptance criteria for RPV failure in NUREG-1806 by the U.S. Nuclear Regulatory Commission (NRC). Thus, there is potential to seek regulatory relief to reduce the inspection population of BWR feedwater nozzles from 100% to 25% every ten years using the technical basis of ASME Code Case N-702.


Sign in / Sign up

Export Citation Format

Share Document