A Novel Technique With a Magnetostrictive Transducer for In Situ Length Monitoring of a Distant Specimen

Author(s):  
Michael Pedrick ◽  
Michael Heckman ◽  
B. R. Tittmann

A Magnetostrictive sensor was used to generate sound waves in a specimen through thirty feet of wire. Many hardware aspects are discussed such as boundaries, materials, acoustic horn design, and sound propagation characteristics which facilitated the generation of sound energy in the specimen. Temperature effects on velocity and length were calculated and a model was developed to determine length from a time of flight measurement. The specimen was heated in an oven to various temperatures and times of flight were measured and compared to the model. Results show agreement between the measured values and the model as well as the ability for a high precision length measurement.

Author(s):  
Alexander Kiy ◽  
Christian Notthoff ◽  
Shankar Dutt ◽  
Mark Grigg ◽  
Andrea Hadley ◽  
...  

In situ small angle X-ray scattering (SAXS) measurements of ion track etching of polycarbonate foils are used to directly monitor the selective dissolution of ion tracks with high precision, including...


2000 ◽  
Author(s):  
Alex Povitsky

Abstract In this study we consider one method of parallelization of implicit numerical schemes on multiprocessor systems. Then, the parallel high-order compact numerical algorithm is applied to physics of amplification of sound waves in a non-uniform mean flow. Due to the pipelined nature of this algorithm, its efficient parallelization is based on scheduling of processors for other computational tasks while otherwise the processors stay idle. In turn, the proposed scheduling algorithm is taken as a special case of the general shop scheduling problem and possible extentions and generalizations of the proposed scheduling methodology are discussed. Numerical results are discussed in terms of baroclinic generation of wave-associated vorticity that appear to be a key process in energy transfer between a non-uniform mean flow and a propagating disturbance. The discovered phenomenon leads to significant amplification of sound waves and controls the direction of sound propagation.


2016 ◽  
Author(s):  
Thomas Röckmann ◽  
Simon Eyer ◽  
Carina van der Veen ◽  
Maria E. Popa ◽  
Béla Tuzson ◽  
...  

Abstract. High precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS) based technique for in-situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw experimental site for atmospheric research (CESAR) in the Netherlands and performed in-situ, high-frequency (approx. hourly) measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of +(0.05 ± 0.03) ‰ for δ13C and –(3.6 ± 0.4) ‰ for δD. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high precision and temporal resolution dataset does not only reveal the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site, but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget, when they are performed at multiple sites that are representative for the entire European domain.


1999 ◽  
Vol 604 ◽  
Author(s):  
Alison B. Flatau ◽  
Marcelo J. Dapino ◽  
Frederick T. Calkins

AbstractThis paper provides an overview of magnetostrictive transducer technology. The bi-directional coupling between the magnetic and mechanical states of a magnetostrictive material provides a transduction mechanism that can be used both for actuation and sensing. The current interest in design of adaptive smart structures, coupled with the advent of materials that exhibit high sensor figures of merit, such as Metglas and giant magnetostrictive materials such as Terfenol-D has lead to a renewed interest in the engineering of optimized magnetostrictive transducer designs. A survey of recent applications for giant magnetostrictive materials as both sensors and actuators and their use in smart structure applications will be presented along with a brief discussion of some pertinent device design issues. Examples of magnetostrictive actuation used to produce displacements, force and acoustic waves are summarized. Magnetostrictive sensor configurations that measure motion, stress or force, torque, magnetic fields and target characteristics are discussed. A very brief look at transducer modeling and experimental results is included and schematics of a number of actuator and sensor configurations are presented.


Sign in / Sign up

Export Citation Format

Share Document