giant magnetostrictive materials
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 6)

H-INDEX

13
(FIVE YEARS 0)

Author(s):  
Xiaowei Xue ◽  
Peng Li ◽  
Feng Jin

Abstract The omnidirectional reflection behaviors of elastic waves and tuned by external magnetic fields are investigated. The projected band structures are used for analyzing omnidirectional reflection bands, which are also validated by the refraction spectra. It is demonstrated that omnidirectional reflection phenomenon can be efficiently tuned via the external magnetic field imposed on the Terfenol-D layer. Furthermore, an absolute band gap can be achieved by constructing two superlattices in tandem with different magnetic fields. Our design scheme and the modulation methodology open a new prospect for designing active acoustic mirrors and filters with high-quality.



Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1416
Author(s):  
Yukai Chen ◽  
Xin Yang ◽  
Mingzhi Yang ◽  
Yanfei Wei ◽  
Haobin Zheng

Complex material parameters that can represent the losses of giant magnetostrictive materials (GMMs) are the key parameters for high-power transducer design and performance analysis. Since the GMMs work under pre-stress conditions and their performance is highly sensitive to pre-stress, the complex parameters of a GMM are preferably characterized in a specific pre-stress condition. In this study, an optimized characterization method for GMMs is proposed using three complex material parameters. Firstly, a lumped parameter model is improved for a longitudinal transducer by incorporating three material losses. Then, the structural damping and contact damping are experimentally measured and applied to confine the parametric variance ranges. Using the improved lumped parameter model, the real parts of the three key material parameters are characterized by fitting the experimental impedance data while the imaginary parts are separately extracted by the phase data. The global sensitivity analysis that accounts for the interaction effects of the multiple parameter variances shows that the proposed method outperforms the classical method as the sensitivities of all the six key parameters to both impedance and phase fitness functions are all high, which implies that the extracted material complex parameters are credible. In addition, the stability and credibility of the proposed parameter characterization is further corroborated by the results of ten random characterizations.



2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ce Rong ◽  
Zhongbo He ◽  
Guangming Xue ◽  
Guoping Liu ◽  
Bowen Dai ◽  
...  

PurposeOwing to the excellent performance, giant magnetostrictive materials (GMMs) are widely used in many engineering fields. The dynamic Jiles–Atherton (J-A) model, derived from physical mechanism, is often used to describe the hysteresis characteristics of GMM. However, this model, despite cited by many different literature studies, seems not to possess unique expressions, which may cause great trouble to the subsequent application. This paper aims to provide the rational expressions of the dynamic J-A model and propose a numerical computation scheme to obtain the model results with high accuracy and fast speed.Design/methodology/approachThis paper analyzes different published papers and provides a reasonable form of the dynamic J-A model based on functional properties and physical explanations. Then, a numerical computation scheme, combining the Newton method and the explicit Adams method, is designed to solve the modified model. In addition, the error source and transmission path of the numerical solution are investigated, and the influence of model parameters on the calculation error is explored. Finally, some attempts are made to study the influence of numerical scheme parameters on the accuracy and time of the computation process. Subsequently, an optimization procedure is proposed.FindingsA rational form of the dynamic J-A model is concluded in this paper. Using the proposed numerical calculation scheme, the maximum calculation error, while computing the modified model, can remain below 2 A/m under different model parameter combinations, and the computation time is always less than 0.5 s. After optimization, the calculation speed can be enhanced with the computation accuracy guaranteed.Originality/valueTo the best of the authors’ knowledge, this paper is the first one trying to provide a rational form of the dynamic J-A model among different citations. No other research studies focus on designing a detailed computation scheme targeting the fast and accurate calculation of this model as well. And the performance of the proposed calculation method is validated in different conditions.



Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5165
Author(s):  
Laurent Daniel ◽  
Mathieu Domenjoud

Giant magnetostrictive materials such as Terfenol-D and Galfenol are used to design actuators and sensors, converting magnetic input into a mechanical response, or conversely, mechanical input into a magnetic signal. Under standard operating conditions, these materials are subjected to stress. It is therefore important to be able to measure, understand and describe their magneto-mechanical behaviour under stress. In this paper, a comprehensive characterisation of the anhysteretic magneto-mechanical behaviour of Terfenol-D was performed. An energy-based multiscale approach was applied to model this behaviour. Finally, it was shown that the strain behaviour of Terfenol-D can be satisfactorily described using an analytical model derived from the full multiscale approach.



2020 ◽  
Vol 11 (1) ◽  
pp. 161
Author(s):  
Shaoyi Xu ◽  
Qiang Peng ◽  
Chuansheng Li ◽  
Bo Liang ◽  
Junwen Sun ◽  
...  

Optical fiber current sensors are widely used in the online monitoring of a new generation power system because of their high electrical insulation, wide dynamic range, and strong anti-electromagnetic interference ability. Current sensors, based on fiber Bragg grating (FBG) and giant magnetostrictive material, have the advantages of high reliability of FBG and high magnetostrictive coefficient of giant magnetostrictive material, which can meet the monitoring requirements of digital power systems. However, giant magnetostrictive materials are expensive, fragile, and difficult to mold, so giant magnetostrictive composite materials have replaced giant magnetostrictive materials as the sensitive elements of sensors. High sensitivity, high precision, wide working range, low response time, and low-cost optical fiber current sensors based on magnetostrictive composites have become a research hotspot. In this paper, the working principle of the sensor, the structure of the sensor, and the improvement of magnetostrictive composite materials are mainly discussed. At the same time, this paper points out improvements for the sensor.







Sign in / Sign up

Export Citation Format

Share Document