Residual Stress Measurements Revealing Weld Bead Start and Stop Effects in Single and Multi-Pass Weld-Runs

Author(s):  
Peter J. Bouchard ◽  
Javier R. Santisteban ◽  
Lyndon Edwards ◽  
Mark Turski ◽  
Jon James ◽  
...  

This paper describes transverse residual stress and strain measurements aimed at quantifying end effects in single and multi-pass weld-runs. Two test specimens are examined: a 60 mm long weld bead deposited on the surface of a 180 mm × 120 mm × 17 mm thick stainless steel plate, and a 62° arc-length multi-pass repair weld in a 432 mm outer diameter, 19.6 mm thick stainless steel pipe girth weld. The residual stress measurements were made by employing the relatively new Contour method and by neutron diffraction using ENGIN-X, the engineering spectrometer at the ISIS facility of the Rutherford Appleton Laboratory (UK). The measured underlying transverse residual stress levels are observed to be essentially uniform directly beneath the weld bead in the plate specimen and in the heat affected zone beneath the capping passes moving from mid-length towards the stop-end of the pipe repair. However, results from both test components demonstrate the existence of short-range concentrations of transverse residual stress along the welding direction owing to individual weld capping bead start and stop effects. Such short length-scale stress variations must be allowed for when interpreting residual stress measurements from line-scans. The experimental work also demonstrates the importance of knowing the expected stress or strain distribution prior to choosing measurement lines for detailed study. The Contour measurement method and neutron strain scanning are powerful tools for mapping residual stress and strain fields.

Author(s):  
Mitchell D. Olson ◽  
Michael R. Hill ◽  
Vipul I. Patel ◽  
Ondrej Muránsky ◽  
Thomas Sisneros

This paper describes a sequence of residual stress measurements made to determine a two-dimensional map of biaxial residual stress in a stainless steel weld. A long stainless steel (316L) plate with an eight-pass groove weld (308L filler) was used. The biaxial stress measurements follow a recently developed approach, comprising a combination of contour method and slitting measurements, with a computation to determine the effects of out-of-plane stress on a thin slice. The measured longitudinal stress is highly tensile in the weld- and heat-affected zone, with a maximum around 450 MPa, and compressive stress toward the transverse edges around −250 MPa. The total transverse stress has a banded profile in the weld with highly tensile stress at the bottom of the plate (y = 0) of 400 MPa, rapidly changing to compressive stress (at y = 5 mm) of −200 MPa, then tensile stress at the weld root (y = 17 mm) and in the weld around 200 MPa, followed by compressive stress at the top of the weld at around −150 MPa. The results of the biaxial map compare well with the results of neutron diffraction measurements and output from a computational weld simulation.


2014 ◽  
Vol 996 ◽  
pp. 349-354 ◽  
Author(s):  
Jeferson Araujo de Oliveira ◽  
Michael E. Fitzpatrick ◽  
Jan Kowal

In this work we evaluate the application of the contour method to fatigue and fracture surfaces. Residual stress measurements were made on quenched and aged AA2124-SiCp composite using neutron diffraction, the contour method with wire EDM, and the contour method on a fatigue crack surface including brittle failure. The contour method successfully measured residual stresses from a wire electro-discharge cut surface, but the fracture method results suggest that residual stress information is lost due to plasticity during fatigue crack growth.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xushan Zhao ◽  
Yuanxun Wang ◽  
Guilan Wang ◽  
Runsheng Li ◽  
Haiou Zhang

Purpose This paper aims to summarize the influence law of hybrid deposited and micro-rolling (HDMR) technology on the shaping strain and residual stress. And the rolling parameters combination was further optimized to guide the actual production. Design/methodology/approach This paper proposed a three-dimensional coupled thermo-mechanical model of the HDMR process. The validated model is used to investigate the influences of rolling parameters on stress and plastic strain (the distance between the energy source and roller [De–r], the rolling compression [cr] and the friction coefficient [fr]). The orthogonal optimization of three factors and three levels was carried out. The influence of rolling parameters on the plastic strain and residual stress is analyzed. Findings The simulation results show that HDMR technology can effectively increase the shaping strain of the weld bead and reduce the residual tensile stress on the weld bead surface. Furthermore, the influence of rolling parameters on stress and strain is obtained by orthogonal analysis, and the corresponding optimal combination is proposed. Also, the rolling temperature significantly affects the residual stress, and the rolling reduction has a substantial effect on the plastic deformation. Research limitations/implications Owing to the choice of research methods, this paper failed to study microstructure evolution. Originality/value This paper provides a reference principle for the optimal selection of rolling parameters in HDMR.


Author(s):  
Graeme Horne ◽  
Danny Thomas ◽  
Andrew Collett ◽  
Andrew Clay ◽  
Martin Cott ◽  
...  

Abstract The prediction of welding residual stress in components is often an important input to structural integrity assessments. An efficient modelling approach was developed for predicting residual stress in power-beam welds, including validation against residual stress measurements. Specifically, sequentially coupled thermo-mechanical finite element analysis was conducted using a simplified heat source that was tuned to the observed fusion zone from a weld macrograph and thermocouple data for a series of electron beam welds in 316L austenitic stainless steel with a variety of geometries. The predicted residual stresses were compared with contour method and neutron diffraction residual stress measurements.


Sign in / Sign up

Export Citation Format

Share Document