Preliminary Results of Stainless Steel Impact Bending Tests

Author(s):  
Spencer D. Snow ◽  
D. Keith Morton ◽  
Tommy E. Rahl ◽  
Robert K. Blandford ◽  
Thomas J. Hill

Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these materials under dynamic (impact) loads in the strain rate range of concern are not well documented. However, two previous papers [1, 2] reported on impact tensile testing and analysis results performed at the Idaho National Laboratory using 304L and 316L stainless steel specimens that began the investigation of these characteristics. The goal of the work presented herein is to: (1) add the results of additional tensile impact testing for 304L stainless steel specimens, and (2) show that the application of the strain rate-dependent material curves (determined through that tensile impact testing) to specimens designed to respond in bending during impact loading would yield accurate deformation and strain predictions.

Author(s):  
R. K. Blandford ◽  
D. K. Morton ◽  
T. E. Rahl ◽  
S. D. Snow

Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates (10 to 200 per second) during accidental drop events. Mechanical characteristics of these materials under dynamic (impact) loads in the strain rate range of concern are not well documented. The goal of the work presented in this paper was to improve understanding of moderate strain rate phenomena on these materials. Utilizing a drop-weight impact test machine and relatively large test specimens (1/2-inch thick), initial test efforts focused on the tensile behavior of specific stainless steel materials during impact loading. Impact tests of 304L and 316L stainless steel test specimens at two different strain rates, 25 per second (304L and 316L material) and 50 per second (304L material) were performed for comparison to their quasi-static tensile test properties. Elevated strain rate stress-strain curves for the two materials were determined using the impact test machine and a “total impact energy” approach. This approach considered the deformation energy required to strain the specimens at a given strain rate. The material data developed was then utilized in analytical simulations to validate the final elevated stress-strain curves. The procedures used during testing and the results obtained are described in this paper.


Author(s):  
Dana K. Morton ◽  
Spencer D. Snow ◽  
Tom E. Rahl ◽  
Robert K. Blandford

Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, three previous papers [1, 2, 3] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens that began the investigation of these characteristics. The goal of the work presented herein is to add the results of additional tensile impact testing for dual-marked 304/304L and 316/316L stainless steel material specimens (hereafter referred to as 304L and 316L, respectively). Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, additional impact tests achieved target strain rates of 5, 10, and 22 per second at room temperature, 300, and 600 degrees Fahrenheit. Elevated true stress-strain curves for these materials at each designated strain rate and temperature are presented herein.


2009 ◽  
Vol 46 (9) ◽  
pp. 1011-1023 ◽  
Author(s):  
Sueng Won Jeong ◽  
Serge Leroueil ◽  
Jacques Locat

The rate-dependent rheological behaviour of soils of different origins and characteristics was studied and the applicability of the power law model was examined. The studied soils were divided into three groups: (i) low-activity soils, (ii) high-activity soils, and (iii) silt-rich soils. The results show that the power law applies to all these soils and is representative of soil behaviour in a strain rate range corresponding to debris flows, which is generally not the case with the Bingham model. For low-activity clays, the power law index, n, is typically equal to 0.12 and seems to increase with the plasticity index; it is larger (i.e., in the range of 0.2–0.6) for silt-rich soils. Comparison of n values for tests performed on intact and remoulded low-activity clay specimens indicates that the power law index is possibly strain-rate dependent.


2020 ◽  
Author(s):  
Chuang Liu ◽  
Dongzhi Sun ◽  
Xianfeng Zhang ◽  
Florence Andrieux ◽  
Tobias Gerster

Abstract Cast iron alloys with low production cost and quite good mechanical properties are widely used in the automotive industry. To study the mechanical behavior of a typical ductile cast iron (GJS-450) with nodular graphite, uni-axial quasi-static and dynamic tensile tests at strain rates of 10− 4, 1, 10, 100, and 250 s− 1 were carried out. In order to investigate the effects of stress state, specimens with various geometries were used in the experiments. Stress–strain curves and fracture strains of the GJS-450 alloy in the strain-rate range of 10− 4 to 250 s− 1 were obtained. A strain rate-dependent plastic flow law based on the Voce model is proposed to describe the mechanical behavior in the corresponding strain-rate range. The deformation behavior at various strain rates is observed and analyzed through simulations with the proposed strain rate-dependent constitutive model. The available damage model from Bai and Wierzbicki is extended to take the strain rate into account and calibrated based on the analysis of local fracture strains. The validity of the proposed constitutive model including the damage model was verified by the corresponding experimental results. The results show that the strain rate has obviously nonlinear effects on the yield stress and fracture strain of GJS-450 alloys. The predictions with the proposed constitutive model and damage models at various strain rates agree well with the experimental results, which illustrates that the rate-dependent flow rule and damage models can be used to describe the mechanical behavior of cast iron alloys at elevated strain rates.


2000 ◽  
Vol 6 (S2) ◽  
pp. 368-369
Author(s):  
N.L. Dietz ◽  
D.D Keiser

Argonne National Laboratory has developed an electrometallurgical treatment process for metallic spent nuclear fuel from the Experimental Breeder Reactor-II. This process stabilizes metallic sodium and separates usable uranium from fission products and transuranic elements that are contained in the fuel. The fission products and other waste constituents are placed into two waste forms: a ceramic waste form that contains the transuranic elements and active fission products such as Cs, Sr, I and the rare earth elements, and a metal alloy waste form composed primarily of stainless steel (SS), from claddings hulls and reactor hardware, and ∼15 wt.% Zr (from the U-Zr and U-Pu-Zr alloy fuels). The metal waste form (MWF) also contains noble metal fission products (Tc, Nb, Ru, Rh, Te, Ag, Pd, Mo) and minor amounts of actinides. Both waste forms are intended for eventual disposal in a geologic repository.


Sign in / Sign up

Export Citation Format

Share Document