scholarly journals Impact Testing of Stainless Steel Materials

Author(s):  
R. K. Blandford ◽  
D. K. Morton ◽  
T. E. Rahl ◽  
S. D. Snow

Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates (10 to 200 per second) during accidental drop events. Mechanical characteristics of these materials under dynamic (impact) loads in the strain rate range of concern are not well documented. The goal of the work presented in this paper was to improve understanding of moderate strain rate phenomena on these materials. Utilizing a drop-weight impact test machine and relatively large test specimens (1/2-inch thick), initial test efforts focused on the tensile behavior of specific stainless steel materials during impact loading. Impact tests of 304L and 316L stainless steel test specimens at two different strain rates, 25 per second (304L and 316L material) and 50 per second (304L material) were performed for comparison to their quasi-static tensile test properties. Elevated strain rate stress-strain curves for the two materials were determined using the impact test machine and a “total impact energy” approach. This approach considered the deformation energy required to strain the specimens at a given strain rate. The material data developed was then utilized in analytical simulations to validate the final elevated stress-strain curves. The procedures used during testing and the results obtained are described in this paper.

Author(s):  
Dana K. Morton ◽  
Spencer D. Snow ◽  
Tom E. Rahl ◽  
Robert K. Blandford

Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, three previous papers [1, 2, 3] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens that began the investigation of these characteristics. The goal of the work presented herein is to add the results of additional tensile impact testing for dual-marked 304/304L and 316/316L stainless steel material specimens (hereafter referred to as 304L and 316L, respectively). Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, additional impact tests achieved target strain rates of 5, 10, and 22 per second at room temperature, 300, and 600 degrees Fahrenheit. Elevated true stress-strain curves for these materials at each designated strain rate and temperature are presented herein.


Author(s):  
Dana K. Morton ◽  
Robert K. Blandford ◽  
Spencer D. Snow

Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, a previous paper [1] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens at room and elevated temperatures. The goal of the work presented herein is to add recently completed impact tensile testing results at −20°F conditions for dual-marked 304/304L and 316/316L stainless steel material specimens (hereafter referred to as 304L and 316L, respectively). Recently completed welded material impact testing at −20°F, room, 300°F, and 600°F is also reported. Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, the impact tests achieved strain rates in the 4 to 40 per second range, depending upon the material temperature. Elevated true stress-strain curves for these materials reflecting varying strain rates and temperatures are presented herein.


Author(s):  
Spencer D. Snow ◽  
D. Keith Morton ◽  
Tommy E. Rahl ◽  
Robert K. Blandford ◽  
Thomas J. Hill

The Idaho National Engineering and Environmental Laboratory (INEEL) developed an apparatus capable of supporting a wide variety of material studies and distinct component testing under impact loads. Material studies include material (metals, plastics, concrete, etc.) response due to bending, tension, shear, and compression loadings at elevated strain rates. Similar testing can also be performed on any distinct component fitting within the apparatus impact loading volume. This apparatus is referred to as the Impact Test Machine (ITM). The ITM is initially being used by the Department of Energy (DOE) to test 304L and 316L stainless steel tensile test specimens at various strain rates for comparison to static properties. The goal is to ultimately develop true stress-strain curves at various strain rates and temperatures for these steels. These curves can then be used in analytical simulations to more accurately predict the deformation and resulting material straining in spent nuclear fuel (SNF) containers, canisters, and casks under accidental drop events (Ref: Snow 1999, 2000). Test results can also help determine a basis for establishing allowable strain limits for these large deformation, inelastic events. This material investigation is currently in an early stage of development. This paper will discuss the results of tensile tests performed on test specimens employed in the formulation of the test process and initial checkout of the ITM.


Author(s):  
Spencer D. Snow ◽  
D. Keith Morton ◽  
Tommy E. Rahl ◽  
Robert K. Blandford ◽  
Thomas J. Hill

Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these materials under dynamic (impact) loads in the strain rate range of concern are not well documented. However, two previous papers [1, 2] reported on impact tensile testing and analysis results performed at the Idaho National Laboratory using 304L and 316L stainless steel specimens that began the investigation of these characteristics. The goal of the work presented herein is to: (1) add the results of additional tensile impact testing for 304L stainless steel specimens, and (2) show that the application of the strain rate-dependent material curves (determined through that tensile impact testing) to specimens designed to respond in bending during impact loading would yield accurate deformation and strain predictions.


2013 ◽  
Vol 589-590 ◽  
pp. 45-51 ◽  
Author(s):  
Li Na Zhang ◽  
Peng Nan Li ◽  
Si Wen Tang ◽  
Wen Bo Tang ◽  
Shuai Zhang

The stress-strain curves, mechanical behaviors, and Johnson-Cook model of 4Cr13 stainless steel were investigated at both the strain rates from 0.001s-1 to 7000s-1 and the temperatures from 293K to 673K based on the electronic universal testing machine and the split Hopkinson bar. The results showed that 4Cr13 stainless steel was very sensitive to the temperature and the strain rate. The temperature sensitivity factor decreased with increasing the temperature, and the strain rate sensitivity factor increased with increasing the strain rate. Both the temperature sensitivity factor and strain rate sensitivity factor decreased with increasing strain. The flow stress increased with strain rate and strain, but decreased with temperature. The J-C model prediction had a good agreement with the experimental stress-strain in the wide range of temperatures and strain rates. The Johnson-Cook model gave the foundation for finite element analysis during the cutting process.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jie Wang ◽  
Jianzhuo Zhang

Rock burst is one of the most serious disasters that can occur in mining. However, studies of mine disaster prevention and hydraulic support still face a lack of large scale high-speed and high-power impact loading test equipment for the simulation of rock bursts. Considering the coexistence of quasistatic loading, dynamic loading, and static-dynamic composite loading in rock bursts, an impact test machine was designed based on hydraulic loading to achieve the maximum impact force of 2000 kN and maximum impact velocity of 10 m/s to simulate the impact of actual rock bursts in this study. In the design process, the action principle and loading characteristics of the rock burst were first analyzed, and on this basis, the hydraulic loading system was designed using theoretical calculations as well as simulation. Requirements related to laboratory experiments were used to determine the technical parameters and structure of the test machine. The main frame of the test machine was designed according to the load requirements, and the dynamic characteristics of the main frame under the impact condition were analyzed. According to the results of the calculations and simulations, a prototype was manufactured, on which a no-loading impact test and crash box impact test were carried out. The test results validated the effectiveness of the test machine. The development of this impact test machine provides the necessary means for the research and development of anti-impact support equipment.


2014 ◽  
Vol 788 ◽  
pp. 357-361
Author(s):  
Yi Su Jia ◽  
Ren Bo Song ◽  
Yu Pei ◽  
Yang Xu ◽  
Jian Xiang Hu

The impact of deformation and strain rate on the strain induced martensite (SIM) from 304M2 austenitic stainless steel was studied by using X-Ray diffraction, transmission electron microscopy. The results indicate that 304M2 is easy to have SIM because of the chemical component and microstructural characteristic. The amount of SIM has great relationship with the deformation and strain rate. It is found that the amount of SIM is reduced during high speed deformation. The obvious SIM can be observed with higher deformation, but the growth rate slows down. When the deformation rates are 8.3%, 55.0% and 67.3%, the contents of martensite are 6.55%, 15.35% and 16.21%, respectively. Compared with the slow stretching, the quick stretching leads to less martensite transformation. Moreover, the elongation of the specimens decreases. At the stable deformation stage, the temperature increases are 72.8 and 91.9℃, respectively, when the strain rates are 2×10-2s-1and 5×10-4s-1. Therefore, the martensitic transformation and the deformation behavior of the austenitic stainless are affected by heating.


2018 ◽  
Vol 51 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Akar Dogan ◽  
Yusuf Arman

In this study, the effects of temperature and impactor nose diameter on the impact behavior of woven glass-reinforced polyamide 6 (PA6) and polypropylene (PP) thermoplastic composites were investigated experimentally. Impact energies are chosen as 10, 30, 50, 70, 90, 110, 130, and 170 J. The thickness of composite materials is 4 mm. Impact tests were performed using a drop weight impact testing machine, CEAST-Fractovis Plus, and the load capacity of test machine is 22 kN. Hemispherical impactor nose diameter of 12, 7, and 20 mm were used as an impactor. The tests are conducted at room temperature (20°C and 75°C). As a result, the PP composites of the same thickness absorbed more energy than PA6 composites. The amount of absorbed energy of PP and PA6 composites decreased with temperature.


2007 ◽  
Vol 558-559 ◽  
pp. 441-448 ◽  
Author(s):  
Jong K. Lee

During hot working, deformation of metals such as copper or austenitic steels involves features of both diffusional flow and dislocation motion. As such, the true stress-true strain relationship depends on the strain rate. At low strain rates (or high temperatures), the stress-strain curve displays an oscillatory behavior with multiple peaks. As the strain rate increases (or as the temperature is reduced), the number of peaks on the stress-strain curve decreases, and at high strain rates, the stress rises to a single peak before settling at a steady-state value. It is understood that dynamic recovery is responsible for the stress-strain behavior with zero or a single peak, whereas dynamic recrystallization causes the oscillatory nature. In the past, most predictive models are based on either modified Johnson-Mehl-Avrami kinetic equations or probabilistic approaches. In this work, a delay differential equation is utilized for modeling such a stress-strain behavior. The approach takes into account for a delay time due to diffusion, which is expressed as the critical strain for nucleation for recrystallization. The solution shows that the oscillatory nature depends on the ratio of the critical strain for nucleation to the critical strain for completion for recrystallization. As the strain ratio increases, the stress-strain curve changes from a monotonic rise to a single peak, then to a multiple peak behavior. The model also predicts transient flow curves resulting from strain rate changes.


2011 ◽  
Vol 704-705 ◽  
pp. 1201-1204 ◽  
Author(s):  
Yang Li ◽  
Zheng Bing Xu ◽  
Jian Min Zeng

The impact specimens with different hydrogen contents were solution treated at 540±3°C for 12h; water quenched at 60-100°C; and aged at 165±1°C for 6h. The impact test was carried out at Roell450 pendulum impact testing machine. The impact test results show that the impact energy has strong relation with the hydrogen content. The total absorption energy increases with the increasing of hydrogen content. The crack propagation energy Avp and present larger proportion than the initial crack energy Avi in the total absorption energy Av. The number of the pinholes increases and the pinholes turn from smaller irregular ones into sub-circular shape ones. The specimen with irregular sub-circular pinholes has larger KI, and has more crack propagation resistance.


Sign in / Sign up

Export Citation Format

Share Document