Experimental Investigation on Seismic Mitigation of Motion Sensitive Equipment Using Multiple Direction Optimized-Friction Pendulum System With Multiple Sliding Interfaces

Author(s):  
C. S. Tsai ◽  
H. C. Su ◽  
Y. M. Wang

Presented in this paper is aimed at experimental evaluation of the efficiencies of the multiple direction-optimized friction pendulum system (MDO-FPS) with multiple sliding interfaces in mitigating the seismic responses of motion sensitive equipment through a series of shaking table tests. Experimental tests of motion sensitive equipment isolated with MDO-FPS isolators and subjected to various types of earthquakes were carried out to investigate the efficiency of the MDO-FPS isolator in reducing the response of equipment during earthquakes. Shaking table test results indicate that the acceleration response of the equipment has been remarkably reduced while compared to that of fixed-base equipment.

Author(s):  
C. S. Tsai ◽  
Y. M. Wang ◽  
H. C. Su

Presented in this paper is the performance evaluation of the multiple friction pendulum system (MFPS) with multiple sliding interfaces on seismic mitigation through a series of shaking table tests of a full scale MFPS-isolated building. In the tests, a three-story steel building of 40 tons in total weight, 3m and 4.5m in two horizontal directions and 9m in height, was equipped with MFPS isolators each with 4 sliding interfaces and subjected to various types of earthquakes to examine the efficiency of the isolators in reducing seismic response of a structure. Experimental results from shaking table tests tells that the roof accelerations, base shears, column shear forces have been significantly lessened with negligible residual displacements in the isolators while compared to the responses of a fixed-base structure.


Author(s):  
C. S. Tsai ◽  
C. I. Hsueh ◽  
H. C. Su

This paper is aimed at the performance evaluation of the multiple direction-optimized friction pendulum system (MDO-FPS) with multiple sliding interfaces on seismic mitigation through a series of shaking table tests of a full scale building isolated with MDO-FPS isolators. Experimental tests of a three-story steel building of 40 tons in total weight, 3m and 4.5m in length and width, respectively, in two horizontal directions and 9m in height, subjected to various types of earthquakes were carried out to investigate the efficiency of the isolators in reducing structural responses during earthquakes. Results obtained from the shaking table tests demonstrate that the roof accelerations, base shears, column shear forces have been remarkably reduced while compared to the responses of a traditionally designed structure.


Author(s):  
C. S. Tsai ◽  
Wen-Shin Chen ◽  
Yung-Chang Lin ◽  
Chi-Lu Lin

In order to prevent a building near a fault from earthquake damage, in this study an advanced base isolation system called the multiple direction optimized-friction pendulum system (Multiple DO-FPS or MDO-FPS) is proposed and examined to address its mechanical behavior through the finite element formulation and evaluate its efficiency in seismic mitigation through a series of shaking table tests. On the basis of the finite element formulation, it is revealed that the natural period, the capacity of the bearing displacement and damping effect for the Multiple Direction Optimized-Friction Pendulum System (Multiple DO-FPS) change continually during earthquakes. Therefore, the MDO-FPS isolator can avoid possibility of resonance of enriched frequencies from ground motions and provide an efficient capacity of the bearing displacement and damping during the earthquakes. Simultaneously, the shaking table test results also illustrate that the Multiple DO-FPS isolator possesses an outstanding seismic mitigation capabilities.


Author(s):  
C. S. Tsai ◽  
T. C. Chiang ◽  
Wen-Shin Chen ◽  
Chen-Tsung Yang ◽  
Jian-Liang Lin

The Friction Pendulum System (FPS) invented by V. A. Zayas in 1987 has been widely used in the seismic engineering all over the world. The efficiency for upgrading the earthquake-proof capability of a fixed base structure has been proved either from theoretical studies or experimental efforts. However, the seismic responses of the FPS-isolated structure are always significant as subjected to near fault earthquakes and strong ground motions with long predominant periods. In order to overcome the drawback of the FPS, a new base isolator named as the Direction Optimized Friction Pendulum System (DO-FPS) has been proposed in this study. The proposed device is mainly composed of a spherical sliding surface, a trench concave surface and an articulated slider. By using the special design, the isolation period is a function of the angle between the directions of the resultant displacement. Therefore, the undesirable phenomenon of resonance could always be prevented. In order to verify the functionality of the proposed device, the shaking table tests of a three story steel structure with DOFPS base isolators have been performed. The test results reveal that the proposed device can effectively upgrade the seismic resistibility of a conventionally fixed base structure. Furthermore, the comparisons between the numerical and the experimental results show that the theory proposed in this study could predict the nonlinear behavior of the DO-FPS with good accuracy.


2006 ◽  
Vol 35 (13) ◽  
pp. 1653-1675 ◽  
Author(s):  
C. S. Tsai ◽  
Wen-Shin Chen ◽  
Tsu-Cheng Chiang ◽  
Bo-Jen Chen

2008 ◽  
Vol 30 (9) ◽  
pp. 2321-2329 ◽  
Author(s):  
C.S. Tsai ◽  
Po-Ching Lu ◽  
Wen-Shin Chen ◽  
Tsu-Cheng Chiang ◽  
Chen-Tsung Yang ◽  
...  

Author(s):  
C. S. Tsai ◽  
Yung-Chang Lin ◽  
H.-C. Su

In order to systematically investigate the mechanical characteristic of a multiple friction pendulum system with more than two concave sliding interfaces and one articulated slider located between these concave sliding interfaces, on the basis of the plasticity theory, a plasticity model called the multiple yield and bounding surfaces model is proposed in addition to analytical formulations derived from the proposed concept of subsystems in this study. The proposed model has two separate groups of multiple yield and bounding surfaces. The first group is adopted to describe the mechanical behavior of the subsystem including the concave sliding interfaces above the articulated slider and the second group is used for modeling the sliding characteristic of the subsystem representing the concave sliding interfaces below the articulated slider. The connection of these two subsystems in series forms the mechanical characteristic of the entire MFPS isolation system. By virtue of the proposed model, the phenomena of the sliding motions of the MFPS isolator with multiple concave sliding interfaces under cyclical loadings can be clearly understood. Analytical results infer that the natural frequency and damping effect of the MFPS isolator with multiple concave sliding interfaces change continually during earthquakes and are controllable through appropriate designs.


Author(s):  
C. S. Tsai ◽  
Yung-Chang Lin ◽  
Wen-Shin Chen

Seismic mitigation of high-tech facilities is a very important issue in earthquake prone areas such as Taiwan, Japan, U.S.A., etc. In order to lessen vulnerability of earthquake damage of high-tech equipment, base isolation seems to be a good choice. This paper mainly explores the possibility of using a new base isolation system named the trench friction pendulum system (TFPS) to reduce seismic responses of high-tech facilities. The main reasons, from a engineer’s point of view, to use this system for protecting high-tech equipment from earthquake damage are high efficiency and low cost. A series of shaking table tests for a high-tech facility isolated with TFPS isolators were carried out in the Department of Civil Engineering, Feng Chia University, Taichung, Taiwan, ROC. The experimental results show that the proposed system provides a good protection for the high-tech facility during strong earthquakes.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
C. S. Tsai ◽  
H. C. Su ◽  
Yung-Chang Lin

In this paper, a base isolator called a multiple direction optimized-friction pendulum system (Multiple DO-FPS) with numerous sliding interfaces is proposed. To understand the mechanical behavior of the Multiple DO-FPS isolator under multidirectional excitations, an analytical model called the multiple yield and bounding surfaces model is proposed. On the basis of the derived mathematical formulations for simulation of the characteristics of the Multiple DO-FPS isolation bearing, it is revealed that the natural period and damping effect of the Multiple DO-FPS isolator are a function of the sliding displacement and sliding direction. By virtue of the proposed model, the phenomena of the sliding motions of the Multiple DO-FPS isolator with numerous sliding interfaces subjected to multidirectional excitations can be understood in a simple manner. The analytical results indicate that the natural frequency and damping effect of the Multiple DO-FPS isolator with numerous concave sliding interfaces change continually during earthquakes and are controllable through appropriate designs.


Sign in / Sign up

Export Citation Format

Share Document