Recent Advances in Lower Bound Shakedown Analysis

Author(s):  
Dieter Weichert ◽  
Abdelkader Hachemi

The special interest in lower bound shakedown analysis is that it provides, at least in principle, safe operating conditions for sensitive structures or structural elements under fluctuating thermo-mechanical loading as to be found in power- and process engineering. In this paper achievements obtained over the last years to introduce more sophisticated material models into the framework of shakedown analysis are developed. Also new algorithms will be presented that allow using the addressed numerical methods as post-processor for commercial finite element codes. Examples from practical engineering will illustrate the potential of the methodology.

2006 ◽  
Vol 129 (1) ◽  
pp. 58-65 ◽  
Author(s):  
B. Scott Kessler ◽  
A. Sherif El-Gizawy ◽  
Douglas E. Smith

The accuracy of a finite element model for design and analysis of a metal forging operation is limited by the incorporated material model’s ability to predict deformation behavior over a wide range of operating conditions. Current rheological models prove deficient in several respects due to the difficulty in establishing complicated relations between many parameters. More recently, artificial neural networks (ANN) have been suggested as an effective means to overcome these difficulties. To this end, a robust ANN with the ability to determine flow stresses based on strain, strain rate, and temperature is developed and linked with finite element code. Comparisons of this novel method with conventional means are carried out to demonstrate the advantages of this approach.


Author(s):  
Dan Vlaicu

In this paper, the finite element method is used to develop the lower bound limit for the elastic shakedown analysis of axisymmetric nozzles under periodic loading conditions. The Nonlinear Superposition Method is employed to calculate the lower bound shakedown loads by quoting Melan’s theorem in a nonlinear finite element analysis. The calculation is divided into two separate iterations which are blended with a technique that matches the elastic-plastic part of the analysis with the linear part. In the first part of the calculation, the cyclic load is applied as a static load to generate an elastic stress field in the structure. The same cyclic load is subsequently combined with the constant fraction of the load in the second part of the calculation, and the total load is applied in an elastic-plastic analysis that exceeds the yield limit. For each solution increment, the residual stress is generated from the superposition of the elastic stress field scaled through the applied cyclic load and the shakedown stress field calculated from the nonlinear analysis. The results obtained from the lower bound method are compared with the full cyclic loading analyses based on nonlinear material properties, and this paper discusses the choice of the global shakedown in terms of the radial strain, and the local through thickness shakedown defined by the hoop strain. Furthermore, this paper presents the development of a generic model that emulates the behavior of the finite element model under cyclic loads in a simplified form, with the statistical representation based on a sampling of base-model data for a variety of test cases. The probabilistic method takes variations of the geometrical dimensions, nonlinear material properties, and pressure load as the input parameters, whereas the response variable is defined in terms of the lower bound of the shakedown loads.


Author(s):  
B. Scott Kessler ◽  
A. Sherif El-Gizawy ◽  
Douglas E. Smith

The accuracy of a finite element model for design and analysis of a metal forging operation is limited by the incorporated material model’s ability to predict deformation behavior over a wide range of operating conditions. Current rheological models prove deficient in several respects due to the difficulty in establishing complicated relations between many parameters. More recently, artificial neural networks (ANN) have been suggested as an effective means to overcome these difficulties. To this end, a robust ANN with the ability to determine flow stresses based on strain, strain rate, and temperature is developed and linked with finite element code. Comparisons of this novel method with conventional means are carried out to demonstrate the advantages of this approach.


2003 ◽  
Vol 125 (4) ◽  
pp. 365-370 ◽  
Author(s):  
Martin Muscat ◽  
Donald Mackenzie

An investigation of the shakedown behavior of axisymmetric nozzles under internal pressure is presented. The analysis is based on elastic-plastic finite element analysis and Melan’s lower bound shakedown theorem. Calculated shakedown pressures are compared with values from the literature and with the ASME Boiler and Pressure Vessel Code Section VIII Division 2 primary plus secondary stress limits. Results obtained by the lower bound method are also verified by cyclic elastic-plastic finite element analysis.


2010 ◽  
Vol 02 (01) ◽  
pp. 145-160 ◽  
Author(s):  
DIETER WEICHERT ◽  
ABDELKADER HACHEMI

Based on the lower-bound direct methods, namely limit and shakedown analysis, it is shown in this paper how these methods can be used in a constructive manner for structural industrial design. The proposed methods are based on finite element analyses and numerical optimization to determine the admissible loading. Numerical applications are presented and compared with existing results in literatures.


1993 ◽  
Vol 21 (1) ◽  
pp. 23-39 ◽  
Author(s):  
R. W. Scavuzzo ◽  
T. R. Richards ◽  
L. T. Charek

Abstract Tire vibration modes are known to play a key role in vehicle ride, for applications ranging from passenger cars to earthmover equipment. Inputs to the tire such as discrete impacts (harshness), rough road surfaces, tire nonuniformities, and tread patterns can potentially excite tire vibration modes. Many parameters affect the frequency of tire vibration modes: tire size, tire construction, inflation pressure, and operating conditions such as speed, load, and temperature. This paper discusses the influence of these parameters on tire vibration modes and describes how these tire modes influence vehicle ride quality. Results from both finite element modeling and modal testing are discussed.


2019 ◽  
Vol 19 (10) ◽  
pp. 2079-2095 ◽  
Author(s):  
Michele Perrotti ◽  
Piernicola Lollino ◽  
Nunzio Luciano Fazio ◽  
Mario Parise

Abstract. The stability of man-made underground cavities in soft rocks interacting with overlying structures and infrastructures represents a challenging problem to be faced. Based upon the results of a large number of parametric two-dimensional (2-D) finite-element analyses of ideal cases of underground cavities, accounting for the variability both cave geometrical features and rock mechanical properties, specific charts have been recently proposed in the literature to assess at a preliminary stage the stability of the cavities. The purpose of the present paper is to validate the efficacy of the stability charts through the application to several case studies of underground cavities, considering both quarries collapsed in the past and quarries still stable. The stability graphs proposed by Perrotti et al. (2018) can be useful to evaluate, in a preliminary way, a safety margin for cavities that have not reached failure and to detect indications of predisposition to local or general instability phenomena. Alternatively, for sinkholes that already occurred, the graphs may be useful in identifying the conditions that led to the collapse, highlighting the importance of some structural elements (as pillars and internal walls) on the overall stability of the quarry system.


2019 ◽  
Vol 16 (05) ◽  
pp. 1840013 ◽  
Author(s):  
P. L. H. Ho ◽  
C. V. Le ◽  
T. Q. Chu

This paper presents a novel equilibrium formulation, that uses the cell-based smoothed method and conic programming, for limit and shakedown analysis of structures. The virtual strains are computed using straining cell-based smoothing technique based on elements of discretized mesh. Fictitious elastic stresses are also determined within the framework of finite element method (CS-FEM)-based Galerkin procedure, and equilibrium equations for residual stresses are satisfied in an average sense at every cell-based smoothing cell. All constrains are imposed at only one point in the smoothing domains, instead of Gauss points as in a standard FEM-based procedure. The resulting optimization problem is then handled using the highly efficient solvers. Various numerical examples are investigated, and obtained solutions are compared with available results in the literature.


2013 ◽  
Vol 788 ◽  
pp. 493-497
Author(s):  
Hua Jie Zhou

Big vibration will be cause by train load and crane load in the over-track buildings, and then generate structure-borne moise in the buildings, which will affect the live quality of the people lived in the buildings greatly. Focusing on this proble, three finite element method is established based on a practical engineering. The measures of reducing noise and vibration is proposed according the characteristics of the building, which is to replace the steel column as concrete column. The dynamic responses of the building under the two cases are calculated and analyzed. The computation results show that the measurement can reduced structure vibration significantly, and accordingly, the structure-borne noise is also reduced greatly. The research results in the paper have strong engineering practicability and can provide some references for some other projections in China in future.


Sign in / Sign up

Export Citation Format

Share Document