scholarly journals Hydrogen Effects on Fracture Toughness of Type 316L Stainless Steel From 175 K to 425 K

Author(s):  
Michael J. Morgan ◽  
Glenn K. Chapman

The effects of hydrogen on the fracture-toughness properties of Type 316L stainless steel from 175 K to 425 K were measured. Fracture-toughness samples were fabricated from Type 316L stainless steel forgings and hydrogen-charged with hydrogen at 34 MPa and 623 K for two weeks prior to testing. The effect of hydrogen on the J-Integral vs. crack extension behavior was measured at various temperatures by fracturing non-charged and hydrogen-charged samples in an environmental chamber. Hydrogen-charged steels had lower toughness values than non-charged ones, but still retained good toughness properties. The fracture-toughness values of hydrogen-charged samples tested near ambient temperature were about 70% of non-charged values. For hydrogen-charged samples tested at 225 K and 425 K, the fracture-toughness values were 50% of the non-charged values. In all cases, fracture occurred by microvoid nucleation and coalescence, although the hydrogen-charged samples had smaller and more closely spaced microvoids. The results suggest that hydrogen effects on toughness are greater at 225 K than they are at ambient temperature because of strain-induced martensite formation. At 425 K, the hydrogen effects on toughness are greater than they are at ambient temperature because of the higher mobility of hydrogen.

Author(s):  
Michael J. Morgan

The effect of hydrogen on the fracture toughness properties of Types 304L, 316L and 21-6-9 forged stainless steels was investigated. Fracture toughness samples were fabricated from forward-extruded forgings. Samples were uniformly saturated with hydrogen after exposure to hydrogen gas at 34 MPa or 69 MPa and 623 K prior to testing. The fracture toughness properties were characterized by measuring the J-R behavior at ambient temperature in air. The results show that the hydrogen-charged steels have fracture toughness values that were about 50–60% of the values measured for the unexposed steels. The reduction in fracture toughness was accompanied by a change in fracture appearance. Both uncharged and hydrogen-charged samples failed by microvoid nucleation and coalescence, but the fracture surfaces of the hydrogen-charged steels had smaller microvoids. Type 316L stainless steel had the highest fracture toughness properties and the greatest resistance to hydrogen degradation.


Alloy Digest ◽  
2015 ◽  
Vol 64 (7) ◽  

Abstract EnduraMet 316LN stainless is a nitrogen strengthened version of Type 316L stainless steel. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1219. Producer or source: Carpenter Technology Corporation.


Author(s):  
Michael J. Morgan

Abstract Forged stainless steels are commonly used for the containment of hydrogen isotopes and fracture toughness properties are needed for structural integrity assessments. In this study, the effects of hydrogen and tritium precharging on the fracture-toughness properties of Types 316L and 304L stainless steel forgings were measured. The purpose of the study was to evaluate hydrogen and tritium effects on fracture toughness properties of: (1) Type 316 stainless steel stem-shaped and cup shaped forgings; and (2) Type 304L cylindrical block forgings with two different yield strengths. Arc-shaped fracture toughness specimens were cut from the forgings and precharged by exposing the specimens to hydrogen or tritium gas at 623K and 34.5 MPa. Tritium precharged specimens were aged at 193 K for 45 months prior to testing to build-in helium-3 from tritium decay. In the as-received condition, the J-Integral fracture toughness of the stem, cup, and block forgings were very high and exceeded 1200 kJ/m2 on average. The fracture toughness of specimens cut from the low yield strength Type 304L stainless steel block forging had the highest fracture toughness values and Type 316L stainless steel cup forging had the lowest. The reduced fracture toughness values were attributed to the large strain required to produce the cup forging and its high yield strength. Hydrogen precharging reduced the fracture toughness of the stem, cup, and block forgings to values between 34%–51% of a baseline value which was taken to be the fracture toughness value of the low yield strength block forging. Tritium precharging reduced the fracture-toughness values more than hydrogen precharging because of the effects of helium from radioactive decay of tritium. The fracture-toughness properties of tritium-precharged forgings ranged from 12% to 23% of the baseline values. In general, Type 316L stainless steel was more resistant to toughness reductions by hydrogen or tritium (and decay helium) than Type 304L stainless steel. Yield strength had only minor effects on fracture toughness for the precharged steels.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 928
Author(s):  
Keisuke Nicho ◽  
Ken’ichi Yokoyama

Marked degradation of tensile properties induced by plastic deformation after dynamic interactions between strain-induced martensite transformation and hydrogen has been investigated for type 316L stainless steel by hydrogen thermal desorption analysis. Upon modified hydrogen charging reported previously, the amount of hydrogen desorbed in the low temperature range increases; the degradation of tensile properties induced by interactions between plastic deformation and hydrogen at 25 °C or induced by interactions between martensite transformation and hydrogen at −196 °C occurs even for the stainless steel with high resistance to hydrogen embrittlement. The hydrogen thermal desorption behavior is changed by each interaction, suggesting changes in hydrogen states. For specimen fractured at 25 °C, the facet-like morphology and transgranular fracture are observed on the outer part of the fracture surface. At −196 °C, a quasi-cleave fracture is observed at the initiation area. Modified hydrogen charging significantly interacts both plastic deformation and martensite transformation, eventually enhancing the degradation of tensile properties. Upon plastic deformation at 25° C after the interactions between martensite transformation and hydrogen by straining to 0.2 at −196 °C, cracks nucleate in association with martensite formed by the interactions at −196 °C and marked degradation of tensile properties occurs. It is likely that the interactions between martensite transformation and hydrogen induce damage directly related to the degradation, thereby affecting subsequent deformation. Upon dehydrogenation after the interactions between the martensite transformation and hydrogen, no degradation of tensile properties is observed. The damage induced by the interactions between martensite transformation and hydrogen probably changes to harmless defects during dehydrogenation.


Alloy Digest ◽  
1995 ◽  
Vol 44 (6) ◽  

Abstract BioDur 316LS stainless steel is a modified version of Type 316L stainless steel to improve corrosion resistance for surgical implant applications. The alloy is vacuum arc remelted. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-596. Producer or source: Carpenter.


2019 ◽  
Vol 7 (46) ◽  
pp. 26250-26260 ◽  
Author(s):  
Hee Jae Kim ◽  
Hitoshi Yashiro ◽  
Hyungsub Kim ◽  
Seoungsu Lee ◽  
Seung-Taek Myung

Type 316L SS is stable in NaPF6 electrolytes, while Fe2+ is dissolved from the type 316L SS in KPF6 electrolytes.


Sign in / Sign up

Export Citation Format

Share Document