An Investigation on the Reduction Schemes of Environmental Fatigue Usage Factor for Pressurizer Surge Line

Author(s):  
Sun-yeh Kang ◽  
Won-ho Jo ◽  
Min-sup Song ◽  
Ki-seok Yoon ◽  
Taek-sang Choi ◽  
...  

For plant life extension, it is the regulatory requirement to assess reactor coolant environmental impacts on critical components of the nuclear power plant including at least those mentioned in NUREG/CR-6260[2]. The pressurizer surge line is the most easy-to-fail component in view of LWR (Light Water Reactor) environments when it comes to meeting the current ASME code limit of the fatigue evaluation. Cumulative Usage Factor (CUF) value could be increased to a maximum of 15.35 times due to the environmental effects, which makes it easy to exceed the allowable fatigue limit (1.0). This paper discusses the process of the environmental correction factor calculation described in NUREG/CR-5704[4], and five proposed schemes for reducing the environmental CUF value to the ASME code limit or below. This paper concludes that the proposed schemes are effective in lowering the environmental CUF value of the pressurizer surge line.

Author(s):  
Jianfeng Yang ◽  
Paul O’Brien

Most of the current operating nuclear power plants in the United States were designed using the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section III, for fatigue design curves. These design curves were developed in the late 1960s and early 1970s. They were often referred to as “air curves” because they were based on tests conducted in laboratory air environments at ambient temperatures. In recent years, laboratory fatigue test data showed that the light-water reactor environment could have significant impact on the fatigue life of carbon and low-alloy steels, austenitic stainless steel, and nickel-chromium-iron (Ni-Cr-Fe) alloys. United States Nuclear Regulatory Commission, Regulatory Guide 1.207 provides a guideline for evaluating fatigue analyses incorporating the life reduction of metal components due to the effects of the light-water reactor environment for new reactors. It recommend following the method developed in NUREG/CR-6909 [3] when designing reactor coolant pressure boundary components. The industry has invested a lot of effort in developing methods and rules for applying environmental fatigue evaluations for ASME Class 1 components and piping. However, the industry experience in applying the environmental fatigue evaluation for reactor core support structures and internal structures has been very limited. During the recent aging management programs, reactor internal component environmental fatigue evaluations for several pressurized water reactors were evaluated. The analyses calculated the cumulative fatigue usage using the recorded plant-specific transient cycles and the projected cycles for 60 years of plant life. The study concludes that the actual fatigue usages of the components are substantially lower than the specified original design conditions. Even assuming the most severe light-water reactor coolant environmental effects, fatigue will not be a concern for 60 years of plant life. The experiences with environmental fatigue evaluation for reactor internals are still very limited. This study shall provide the industry with beneficial information to develop the approaches and rules addressing the environmental effect on the fatigue life of reactor internals.


Author(s):  
Hardayal S. Mehta ◽  
Henry H. Hwang

Recently published Draft Regulatory Guide DG-1144 by the NRC provides guidance for use in determining the acceptable fatigue life of ASME pressure boundary components, with consideration of the light water reactor (LWR) environment. The analytical expressions and further details are provided in NUREG/CR-6909. In this paper, the environmental fatigue rules are applied to a BWR feedwater line. The piping material is carbon steel (SA333, Gr. 6) and the feedwater nozzle material is low alloy steel (SA508 Class 2). The transients used in the evaluation are based on the thermal cycle diagram of the piping. The calculated fatigue usage factors including the environmental effects are compared with those obtained using the current ASME Code rules. In both cases the cumulative fatigue usage factors are shown to be less than 1.0.


Author(s):  
Jason Carneal

The American Society of Mechanical Engineers (ASME) Code for Operation and Maintenance of Nuclear Power Plants (OM Code) establishes the requirements for preservice and inservice testing and examination of certain components to assess their operational readiness in light-water reactor nuclear power plants. The Code of Federal Regulations (CFR) endorses and mandates the use of the ASME OM Code for testing air-operated valves in 10 CFR 50.55a(b)(3)(ii) and 10 CFR 50.55a(f)(4), respectively. ASME has recently approved Mandatory Appendix IV, Revision 0. NRC currently anticipates that Mandatory Appendix IV will first appear in the 2014 Edition of the ASME OM Code. Publication of the 2014 Edition of the ASME OM Code begins the NRC rulemaking process to modify 10 CFR 50.55a to incorporate the 2014 Edition of the ASME OM Code by reference. NRC staff has actively participated in the development of Mandatory Appendix IV, Revision 0, through participation in the ASME OM Code Subgroup on Air-Operated Valves (SG-AOV). The purpose of this paper is to provide NRC staff perspectives on the contents and implementation of Mandatory Appendix IV, Revision 0. This paper specifically discusses Mandatory Appendix IV, Sections IV-3100, “Design Review,” IV-3300, “Preservice Test,” IV-3400, “Inservice Test,” IV-3600, “Grouping of AOVs for Inservice Diagnostic Testing,” and IV-3800, “Risk Informed AOV Inservice Testing.” These topics were selected based on input received during NRC staff participation in the SG-AOV and other industry meetings. The goal of this paper is to provide NRC staff perspectives on the topics of most interest to NRC staff and members of the SG-AOV. Paper published with permission.


Author(s):  
Stéphan Courtin ◽  
Thomas Métais ◽  
Manuela Triay ◽  
Eric Meister ◽  
Stéphane Marie

The French nuclear industry has to face nowadays a series of challenges it did not have to face a decade ago. The most significant one is to ensure a reliable and safe operation of Nuclear Power Plants (NPP) in a context of both an ageing reactor fleet and new builds. The new constructions need rules that integrate a strong operation feedback while the older NPPs need rules that will guarantee the life extension beyond 40 years of operation. In this context, a new edition of the French RCC-M Code is planned for 2016. This new edition integrates the modifications made to the Code as a result of Requests for Modification (RM), which can be submitted by anyone and which help to continuously improve the quality and robustness of the Code. Concerning fatigue analyses, the RCC-M Code steering committee has acknowledged end of 2014 the reception of two RM to modify the fatigue design curve for austenitic stainless steels and Nickel base alloys, as well as to integrate environmental effects in the fatigue evaluation for austenitic stainless steel components. The contents of these two RM were based on the proposals presented in Reference [1]. AFCEN required a technical review of these two RM and this task was performed by a working group composed by French and international experts. This process concluded to the approval of these two RM to be integrated to the 2016 edition of the RCC-M Code. This paper offers a presentation of these two new Rules in Probation Phase (RPP), this format being quite similar to Code Cases proposed by ASME Code.


Author(s):  
Omesh K. Chopra

The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components and specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain–vs.–life (ε–N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This paper reviews the existing fatigue ε–N data for austenitic stainless steels in LWR coolant environments. The effects of key material, loading, and environmental parameters, such as steel type, strain amplitude, strain rate, temperature, dissolved oxygen level in water, and flow rate, on the fatigue lives of these steels are summarized. Statistical models are presented for estimating the fatigue ε–N curves for austenitic stainless steels as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are presented. Data available in the literature have been reviewed to evaluate the conservatism in the existing ASME Code fatigue design curves.


Sign in / Sign up

Export Citation Format

Share Document