Finite Element Analysis on the Application of Mini-C(T) Test Specimens for Fracture Toughness Evaluation

Author(s):  
Hisashi Takamizawa ◽  
Tohru Tobita ◽  
Takuyo Ohtsu ◽  
Jinya Katsuyama ◽  
Yutaka Nishiyama ◽  
...  

Fracture toughness evaluation by the Master Curve method using 4-mm-thick miniature compact tension (mini-C(T)) specimens taken from the broken halves of surveillance Charpy specimens has been proposed. In the present study, we performed finite element analysis (FEA) to examine the difference in the constraint effect of the crack tip for differently sized C(T) and precracked Charpy v-notch specimens. The constraint effect of the mini-C(T) specimens in terms of the T-stress and Q-parameter was similar to that of the larger C(T) specimens. In addition, to optimize the fatigue precracking conditions for the mini-C(T) specimen, plastic zone distribution analysis was performed by FEA. Using plastic zone distribution analysis, we demonstrated that a wider machined notch and shorter fatigue precrack length than that in conventional configurations can be applied for narrow and straight notches. We also obtained the fracture toughness data for two kinds of SA533B-1 steels and one weld metal with different sizes in addition to the data obtained in our previous study. It was shown that the reference temperature To obtained from the mini-C(T) specimens was in good agreement with those from other specimens. We compared the fracture toughness data, including the plane strain fracture toughness value obtained by 4T-C(T) specimens, with T41J-based fracture toughness curves proposed in a recent study. Most of the data, including the 4T-C(T) and irradiated specimens, were enveloped by the proposed lower-bound curve.

2000 ◽  
Vol 123 (2) ◽  
pp. 191-197 ◽  
Author(s):  
Y. Shindo ◽  
K. Horiguchi ◽  
R. Wang ◽  
H. Kudo

An experimental and analytical investigation in cryogenic Mode I interlaminar fracture behavior and toughness of SL-E woven glass-epoxy laminates was conducted. Double cantilever beam (DCB) tests were performed at room temperature (R.T.), liquid nitrogen temperature (77 K), and liquid helium temperature (4 K) to evaluate the effect of temperature and geometrical variations on the interlaminar fracture toughness. The fracture surfaces were examined by scanning electron microscopy to verify the fracture mechanisms. A finite element model was used to perform the delamination crack analysis. Critical load levels and the geometric and material properties of the test specimens were input data for the analysis which evaluated the Mode I energy release rate at the onset of delamination crack propagation. The results of the finite element analysis are utilized to supplement the experimental data.


2008 ◽  
Vol 77 (17) ◽  
Author(s):  
T. Fett ◽  
G. Rizzi ◽  
D. Creek ◽  
S. Wagner ◽  
J. P. Guin ◽  
...  

2020 ◽  
Vol 39 (15-16) ◽  
pp. 587-598 ◽  
Author(s):  
Vahid Daghigh ◽  
Thomas E Lacy ◽  
Hamid Daghigh ◽  
Grace Gu ◽  
Kourosh T Baghaei ◽  
...  

Tailorability is an important advantage of composites. Incorporating new bio-reinforcements into composites can contribute to using agricultural wastes and creating tougher and more reliable materials. Nevertheless, the huge number of possible natural material combinations works against finding optimal composite designs. Here, machine learning was employed to effectively predict fracture toughness properties of multiscale bio-nano-composites. Charpy impact tests were conducted on composites with various combinations of two new bio fillers, pistachio shell powders, and fractal date seed particles, as well as nano-clays and short latania fibers, all which reinforce a poly(propylene)/ethylene–propylene–diene-monomer matrix. The measured energy absorptions obtained were used to calculate strain energy release rates as a fracture toughness parameter using linear elastic fracture mechanics and finite element analysis approaches. Despite the limited number of training data obtained from these impact tests and finite element analysis, the machine learning results were accurate for prediction and optimal design. This study applied the decision tree regressor and adaptive boosting regressor machine learning methods in contrast to the K-nearest neighbor regressor machine learning approach used in our previous study for heat deflection temperature predictions. Scanning electron microscopy, optical microscopy, and transmission electron microscopy were used to study the nano-clay dispersion and impact fracture morphology.


Sign in / Sign up

Export Citation Format

Share Document