Experimental and Finite Element Analysis of Fracture Toughness of Chilled LM13 MMC

Author(s):  
H. S. Harshith ◽  
Joel Hemanth
2000 ◽  
Vol 123 (2) ◽  
pp. 191-197 ◽  
Author(s):  
Y. Shindo ◽  
K. Horiguchi ◽  
R. Wang ◽  
H. Kudo

An experimental and analytical investigation in cryogenic Mode I interlaminar fracture behavior and toughness of SL-E woven glass-epoxy laminates was conducted. Double cantilever beam (DCB) tests were performed at room temperature (R.T.), liquid nitrogen temperature (77 K), and liquid helium temperature (4 K) to evaluate the effect of temperature and geometrical variations on the interlaminar fracture toughness. The fracture surfaces were examined by scanning electron microscopy to verify the fracture mechanisms. A finite element model was used to perform the delamination crack analysis. Critical load levels and the geometric and material properties of the test specimens were input data for the analysis which evaluated the Mode I energy release rate at the onset of delamination crack propagation. The results of the finite element analysis are utilized to supplement the experimental data.


2020 ◽  
Vol 39 (15-16) ◽  
pp. 587-598 ◽  
Author(s):  
Vahid Daghigh ◽  
Thomas E Lacy ◽  
Hamid Daghigh ◽  
Grace Gu ◽  
Kourosh T Baghaei ◽  
...  

Tailorability is an important advantage of composites. Incorporating new bio-reinforcements into composites can contribute to using agricultural wastes and creating tougher and more reliable materials. Nevertheless, the huge number of possible natural material combinations works against finding optimal composite designs. Here, machine learning was employed to effectively predict fracture toughness properties of multiscale bio-nano-composites. Charpy impact tests were conducted on composites with various combinations of two new bio fillers, pistachio shell powders, and fractal date seed particles, as well as nano-clays and short latania fibers, all which reinforce a poly(propylene)/ethylene–propylene–diene-monomer matrix. The measured energy absorptions obtained were used to calculate strain energy release rates as a fracture toughness parameter using linear elastic fracture mechanics and finite element analysis approaches. Despite the limited number of training data obtained from these impact tests and finite element analysis, the machine learning results were accurate for prediction and optimal design. This study applied the decision tree regressor and adaptive boosting regressor machine learning methods in contrast to the K-nearest neighbor regressor machine learning approach used in our previous study for heat deflection temperature predictions. Scanning electron microscopy, optical microscopy, and transmission electron microscopy were used to study the nano-clay dispersion and impact fracture morphology.


Author(s):  
Huifeng Jiang ◽  
Xuedong Chen ◽  
Zhichao Fan

Heretofore, several kinds of codes are applicable to the structural integrity assessment for pipe containing defects, i.e. API 579, R6 and BS 7910 etc. In this paper, different methods from API 579-1/ASME FFS-1: 2007 and R6-2000 were employed to assess the integrity of pipe containing a circumferential through-thickness crack. However, there was a significant difference between the calculated load ratios by these two codes, although the calculated fracture ratios were very close. To verify these results, elastic-plastic finite element analysis was carried out to calculate the limit load and the load ratio. Additionally, the experimental results and our previous engineering experience were also referred to. The final results imply that the larger load ratio obtained from R6-2000 rather than API 579 code is more reasonable for the pipe with good fracture toughness.


2019 ◽  
Vol 827 ◽  
pp. 196-202
Author(s):  
Hector A. Tinoco ◽  
Pavel Hutař ◽  
Benoit Merle ◽  
Mathias Göken ◽  
Tomáš Kruml

This paper presents a finite element analysis of a pre-cracked freestanding gold thin film subjected to bulge test. These tests were conducted in order to determine the elasto-plastic properties and fracture toughness of the gold films. For the experimental tests, a pre-crack was introduced in the center of the film by focused ion beam (FIB) milling with a length of 10 and a width of 100nm. For the numerical fracture analysis, the problem was divided into two stages; the first stage was the development of the numerical model on the whole film without pre-crack (elasto-plastic analysis) and the second one was performed on a film portion that included the pre-crack (sub-modeling stage). Three different notches (rounded, sharp and V-sharp) were applied to calculate the stress intensity factor around the crack tip using path independent J-integral. The obtained results show that the load-deflection curves for non-cracked and pre-cracked film reproduced the experiments using the calculated elasto-plastic properties. This indicates that the proposed models presented a good correlation and robustness. Additionally, fracture toughness values were calculated between 0.288 and 0.303with J-integral values 1.037 J/m2 (elastic) and 1.136 J/m2 (elasto-plastic) which correspond with other calculations available in the literature.


Sign in / Sign up

Export Citation Format

Share Document