Characterization of Advanced Steels as Accident Tolerant Cladding for Light Water Reactor Nuclear Fuel

Author(s):  
Raul B. Rebak

After the tsunami incident in Fukushima in March 2011, the international community is set to identify appropriate nuclear materials with increased accident tolerance with respect to the traditional UO2-zirconium alloy fuel system permitting loss of active cooling for a considerably longer time period, while maintaining or improving the fuel performance during normal operations. The researched safety characteristics of these advanced fuels are mainly: (a) Improved reaction kinetics with steam; (b) Slower hydrogen production rate; and (c) Enhanced retention of fission products. In the US the Department of Energy is supporting the development of an improved cladding using advanced steels such as the iron-chromium-aluminum (FeCrAl) alloy system. Environmental test results show that FeCrAl alloys are highly resistant to corrosion and environmental cracking under normal operation conditions and extremely resistant to attack by steam under accident conditions. That is, the replacement of a zirconium alloy using a ferritic material containing chromium and aluminum appears to be the most near term implementation for accident tolerant fuels.

MRS Advances ◽  
2017 ◽  
Vol 2 (21-22) ◽  
pp. 1217-1224 ◽  
Author(s):  
Raul B. Rebak ◽  
Kurt A. Terrani ◽  
William P. Gassmann ◽  
John B. Williams ◽  
Kevin L. Ledford

ABSTRACTThe US Department of Energy (DOE) is partnering with fuel vendors to develop enhanced accident tolerant nuclear fuels for Generation III water cooled reactors. In comparison with the standard current uranium dioxide and zirconium alloy system UO2-Zr), the proposed alternative accident tolerant fuel (ATF) should better tolerate loss of cooling in the core for a considerably longer time while maintaining or improving the fuel performance during normal operation conditions. General Electric, Oak Ridge National Laboratory and their partners have proposed to replace zirconium based alloy cladding in current commercial power reactors with an iron-chromium-aluminum (FeCrAl) alloy cladding such as APMT. The use of FeCrAl alloys will greatly reduce the risk of operating the power reactors to produce electricity.


2005 ◽  
Vol 3 (1) ◽  
pp. 106-117 ◽  
Author(s):  
Anikó Kerkápoly ◽  
Nóra Vajda ◽  
Tamás Pintér ◽  
Pintér Csordás

AbstractThe increase of activities of fission products and transmutation products in the primary coolant of a nuclear power plant indicates the presence of fuel rod failures. The measurement of the activity concentration of the primary coolant was able to detect fuel failures in the reactor core. Microanalytical methods for examining individual hot particles have been developed and applied to fuel failure detection under normal operation conditions as well as during the severe fuel damage that occurred in the cleaning tank incident at Unit 2 of NPP Paks in April 2003. Several faulty fuel rods can be detected simultaneously by the characterization of individual hot particles originating from the primary water. The analysis of particles originating from the damaged fuels provides information relating to the dissolution process of the fuel debris.


Author(s):  
Raul B. Rebak ◽  
Kurt A. Terrani ◽  
Russ M. Fawcett

The goal of the U.S. Department of Energy (DOE) Accident Tolerant Fuel Program (ATF) for light water reactors (LWR) is to identify alternative fuel system technologies to further enhance the safety of commercial nuclear power plants. An ATF fuel system would endure loss of cooling in the reactor for a considerably longer period of time than the current systems. The General Electric (GE) and Oak Ridge National Laboratory (ORNL) ATF design concept utilizes an iron-chromium-aluminum (FeCrAl) alloy material as fuel rod cladding in combination with uranium dioxide (UO2) fuel pellets currently in use, resulting in a fuel assembly that leverages the performance of existing/current LWR fuel assembly designs and infrastructure with improved accident tolerance. Significant testing was performed in the last three years to characterize FeCrAl alloys for cladding applications, both under normal operation conditions of the reactor and under accident conditions. This article is a state of the art description of the concept.


2020 ◽  
Vol 2 (61) ◽  
pp. 51-60
Author(s):  
V. Skalozubov ◽  
◽  
D. Pirkovsky ◽  
M. Alali ◽  
R. Algerby ◽  
...  

Based on the analysis of known researches, it is revealed that the quantity and accumulation rate of cyclic thermal and dynamic loads in the transient modes of normal operation conditions, when violating normal operation conditions and in accident conditions (except for the nuclear reactor vessel) are the key factors of prediction of operation life extension for a heat power equipment (heat exchangers, pumps, armature). The method for predictive estimation of terms of operation life extension of a heat power equipment depending on stress amplitudes in transient and accident conditions, quantity and accumulation rate of cyclic loads, strength metal parameters of a heat power equipment vessels (except for a reactor vessel) is provided. The method is implemented on the example of steam generators of WWERs and using operational data of South-Ukraine-1 (by 2010). Admissible accumulation rate of cyclic loads during operation life extension by 30, 40 and 50 years is a result. The results define insufficient substantiation of nuclear power plant operation in the “maneuverable” modes with a variable reactor power. In this case, the quantity of cyclic equipment loads increases dramatically, and terms of safe operation are limited. The developed method and the obtained results of prediction of operation life extension of heat power equipment can be used for industry programs to extend the operation of Ukrainian nuclear power plants, as well as to improve the regulatory documents governing the conditions and requirements for acceptable safe extension of the operation life of heat power equipment of nuclear and thermal power enterprises. Further improvement of the method proposed in the work for predicting operation life extension of heat power equipment can be based on the development of methods for analyzing the reliability of heat power equipment and databases on operation disturbances.The materials of the presented work are used in the educational process for the training, retraining and advanced training of specialists in the energy industry.


Author(s):  
Zhipeng Chen ◽  
Fei Xie ◽  
Yanhua Zheng ◽  
Lei Shi ◽  
Fu Li

High temperature gas-cooled reactor (HTGR), especially the pebble-bed core type reactor, will inevitably cause the wear the graphite components and generate graphite dust in the core. The graphite dust is taken away by helium coolant and deposited on the surface of the primary circuit, and the fission products may be absorbed on the dust. Since it is possible that the fission products are released with dust under the accident conditions such as depressurization events, they have a potential hazard of radiation exposure to the environment. The objective of this paper is to develop a code for calculating the behaviour of graphite dust in the primary circuit of HTGR. The paper is focused on development of models for predicting the deposition rates of the dust. The purpose of the work is to estimate the amount and distribution of deposited dust during plant life time, which was assumed to be 40 full-power years. The result will lay the foundation for further studies of fission products releasing and interaction with dust under accident conditions.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5279
Author(s):  
Run Luo ◽  
Chunyu Liu ◽  
Rafael Macián-Juan

A molten salt reactor (MSR) has unique safety and economic advantages due to the liquid fluoride salt adopted as the reactor fuel and heat carrier fluid. The operation scheme and control strategy of the MSR plant are significantly different from those of traditional solid-fuel reactors because of the delayed neutron precursors drift with the liquid-fuel flow. In this paper, a simulation platform of the MSR plant is developed to study the control characteristics under normal and accident conditions. A nonlinear dynamic model of the whole system is built in the platform consisting of a liquid-fuel reactor with a graphite moderator, an intermediate heat exchanger and a steam generator. A new control strategy is presented based on a feed-forward and feedback combined scheme, a power control system and a steam temperature control system are designed to regulate load changes of the plant. Three different types of operation conditions are simulated with the control systems, including transients of normal load-follow operation, a reactivity insertion accident and a loss of flow accident. The simulation results show that the developed control system not only has a fast load-follow capability during normal operation, but also has a good control performance under accident conditions.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 557
Author(s):  
Egor Kashkarov ◽  
Bright Afornu ◽  
Dmitrii Sidelev ◽  
Maksim Krinitcyn ◽  
Veronica Gouws ◽  
...  

Zirconium-based alloys have served the nuclear industry for several decades due to their acceptable properties for nuclear cores of light water reactors (LWRs). However, severe accidents in LWRs have directed research and development of accident tolerant fuel (ATF) concepts that aim to improve nuclear fuel safety during normal operation, operational transients and possible accident scenarios. This review introduces the latest results in the development of protective coatings for ATF claddings based on Zr alloys, involving their behavior under normal and accident conditions in LWRs. Great attention has been paid to the protection and oxidation mechanisms of coated claddings, as well as to the mutual interdiffusion between coatings and zirconium alloys. An overview of recent developments in barrier coatings is introduced, and possible barrier layers and structure designs for suppressing mutual diffusion are proposed.


Author(s):  
Rainer Moormann

The AVR pebble bed reactor (46 MWth) was operated 1967–1988 at coolant outlet temperatures up to 990°C. Also because of a lack of other experience the AVR operation is a basis for future HTRs. This paper deals with insufficiently published unresolved safety problems of AVR and of pebble bed HTRs. The AVR primary circuit is heavily contaminated with dust bound and mobile metallic fission products (Sr-90, Cs-137) which create problems in current dismantling. The evaluation of fission product deposition experiments indicates that the end of life contamination reached several percent of a single core inventory. A re-evaluation of the AVR contamination is performed in order to quantify consequences for future HTRs: The AVR contamination was mainly caused by inadmissible high core temperatures, and not — as presumed in the past — by inadequate fuel quality only. The high AVR core temperatures were detected not earlier than one year before final AVR shut-down, because a pebble bed core cannot be equipped with instruments. The maximum core temperatures were more than 200 K higher than precalculated. Further, azimuthal temperature differences at the active core margin were observed, as unpredictable hot gas currents with temperatures > 1100°C. Despite of remarkable effort these problems are not yet understood. Having the black box character of the AVR core in mind it remains uncertain whether convincing explanations can be found without major experimental R&D. After detection of the inadmissible core temperatures, the AVR hot gas temperatures were strongly reduced for safety reasons. Metallic fission products diffuse in fuel kernel, coatings and graphite and their break through takes place in long term normal operation, if fission product specific temperature limits are exceeded. This is an unresolved weak point of HTRs in contrast to other reactors and is particularly problematic in pebble bed systems with their large dust content. Another disadvantage, responsible for the pronounced AVR contamination, lies in the fact that activity released from fuel elements is distributed in HTRs all over the coolant circuit surfaces and on graphitic dust and accumulates there. Consequences of AVR experience on future reactors are discussed. As long as pebble bed intrinsic reasons for the high AVR temperatures cannot be excluded they have to be conservatively considered in operation and design basis accidents. For an HTR of 400 MWth, 900°C hot gas temperature, modern fuel and 32 fpy the contaminations are expected to approach at least the same order as in AVR end of life. This creates major problems in design basis accidents, for maintenance and dismantling. Application of German dose criteria on advanced pebble bed reactors leads to the conclusion that a pebble bed HTR needs a gas tight containment even if inadmissible high temperatures as observed in AVR are not considered. However, a gas tight containment does not diminish the consequences of the primary circuit contamination on maintenance and dismantling. Thus complementary measures are discussed. A reduction of demands on future reactors (hot gas temperatures, fuel burn-up) is one option; another one is an elaborate R&D program for solution of unresolved problems related to operation and design basis accidents. These problems are listed in the paper.


Sign in / Sign up

Export Citation Format

Share Document