Determination of High-Temperature Creep Property of High-Cr Steel Based Upon Indentation Test

Author(s):  
Masayuki Arai ◽  
Takahiro Ishikawa ◽  
Yukio Takahashi ◽  
Tomohisa Kumagai

In this paper, the procedure which can estimate creep exponent and coefficient in Norton’s law from the impression size rather than the penetration depth is discussed based upon a high-temperature creep indentation test. Firstly, an analytical solution related to the change in impression size with dwelling time at an indentation load is formulated by solving problem of infinite creeping media embedding spherical cavity subjected to an inner pressure which characterizes an indentation load. The applicability of the formula to elastic-plastic-creeping model resembling an actual response is checked by conducting non-linear finite-element analysis combined with contact option. Finally, creep indentation tests are conducted for a high-Cr ferritic heat-resisting steel. It is shown that the creep parameters at a lower stress level can be estimated at temperature 873K.

2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Masayuki Arai

In this paper, the procedure which can estimate creep exponent and coefficient in Norton's law of the miniature sample from the impression size rather than the penetration depth is discussed based upon a high-temperature creep indentation test. First, an analytical solution related to the change in the impression size with dwelling time at an indentation load is solved by using a well-known problem of infinite creeping media embedding spherical cavity subjected to an inner pressure which characterizes an indentation load. The applicability of the formula to elastic–plastic-creeping model resembling an actual response is checked by conducting a nonlinear finite-element analysis combined with contact option. Finally, creep indentation tests are conducted for a high-Cr ferritic heat-resisting steel, grade 122. It is shown that the creep parameters at a lower stress level can be estimated at temperature 873 K.


1987 ◽  
Vol 73 (1) ◽  
pp. 183-190 ◽  
Author(s):  
Junshan ZHANG ◽  
Masao TAKEYAMA ◽  
Takashi MATSUO ◽  
Makoto KIKUCHI ◽  
Ryohei TANAKA

2020 ◽  
Vol 54 (20) ◽  
pp. 2663-2676
Author(s):  
Henry A Colorado ◽  
Elkin I Gutiérrez-Velásquez ◽  
Clem Hiel

This paper presented the cantilever beam experiments and the method for creep in chemically bonded ceramics reinforced with glass, carbon, and basalt unidirectional fibers. The ceramic composite samples were fabricated by mixing wollastonite powder and phosphoric acid, through the resonant acoustic mixing technique. The reinforced fibers were added via pultrusion process. The manufactured materials were exposed to high temperature creep tests at 600, 800 and 1000℃, with an annealing time of 1 h, all in air environment. Some examples of real large-scale structures made manually by a company were also included. In order to understand the microstructure, X-ray diffraction and scanning electron microscopy analysis were included. The presented method is simple and can be used in any inorganic ceramic slurry types, such as geopolymers, phosphate cements, clay-based materials, or Portland cement composites. The sample response in high temperature creep experiments was analyzed with a new but very simple technique, and modeled using finite element analysis over all compositions. Results revealed that fibers have a significant effect on the composite creep when compared to the ceramic without reinforcement, and particularly carbon fibers showed a quite interested effect in reducing the creep effects. Results show the limit of the materials under conditions typically found in fires and other extreme environments.


1987 ◽  
Vol 54 (4) ◽  
pp. 822-827 ◽  
Author(s):  
G. J. Weng

Based on the mechanism of dislocation climb-plus-glide, a micromechanical theory is developed for the high-temperature creep of polycrystals. This model assumes that dislocation climb is responsible for the release of dislocations and whose subsequent glide provides the only significant contribution to the overall creep strain. Taking into consideration the forces acting on both dislocation climb and dislocation glide, a microconstitutive equation is introduced to describe the transient and steady-state creep of slip systems. Together with the self-consistent relation, the creep property of a polycrystal is determined by an averaging process over the behavior of its constituent grains. The developed micromechanical theory is then applied to model the creep behavior of lead at 0.56 Tm, under both tension and shear. Based on these micromechanical analyses, a macroscopic multiaxial theory—involving an effective normal stress to reflect the climb force on the microscale as well as the usual effective shear stress—is also developed. It is found that the effective normal stress, which is independent of the hydrostatic pressure, depends primarily on the second invariant of the deviatoric stress, and only weakly so on the third invariant. Thus despite the distinct presence of two types of microstress, the constitutive equations on the macroscale can still be reasonably described by the second invariant alone even at high temperature.


Sign in / Sign up

Export Citation Format

Share Document