Comparison of Leak-Before-Break Assessment of Main Loop Piping Lines Fabricated of Different Materials

Author(s):  
Linwei Ma ◽  
Xiaotao Zheng ◽  
Yan Wang ◽  
Jiasheng He ◽  
Anqing Shu

Leak-Before-Break (LBB) assessment is used for the design of nuclear reactor coolant system main loop piping to lower the cost of construction and operation in China. In these applications, the materials of main loop piping lines are cast austenitic stainless steel (CASS) or wrought stainless steel (WSS) due to the different type of reactor design. According to US.NRC SRP3.6.3, LBB assessment includes two major calculations, such as critical crack size calculation and leakage flaw size calculation. The elastic-plastic instability analysis or plastic instability analysis is chosen to perform critical size calculation depending on material properties, especially fracture toughness. In this paper, LBB assessment in the guidance of SRP 3.6.3 was performed to evaluate main loop piping lines of CASS and WSS. The JR curve tests and the adjustment due to thermal aging are performed to achieve reasonable material properties. J integral/tearing modulus approach is used to determine critical crack size of CASS pipe and net section collapse (NSC) approach is used to determine critical crack size of WSS pipe. Leakage flaw size under 1gpm leakage detection capability is determined based on Henry’s homogeneous nonequilibrium critical flow model. In order to demonstrate that fatigue crack growth is not a potential source of pipe rupture for the evaluated piping lines, the fatigue crack growth of a postulated circumferential part-through-wall crack under nuclear power plant full life time operating transients and the fatigue crack growth of a circumferential through-wall crack under one time safe shutdown seismic are analyzed. And the LBB assessment procedure and results of CASS pipe and WSS pipe are compared.

Author(s):  
Igor Varfolomeev ◽  
Denis Ivanov ◽  
Dieter Siegele ◽  
Gerhard Nagel

The paper presents results of a probabilistic leak-before-break (LBB) assessment of a ferritic main coolant line of a pressurized water reactor representative for German nuclear power plants. The analysis approach is based on the elastic-plastic fracture mechanics methodology, incorporating the failure assessment diagram to calculate the critical through-thickness crack size, as well as fatigue crack growth calculations to determine the flaw length at wall penetration. An essential part of this study is the collation and statistical treatment of material data, such as strength properties, crack resistance and fatigue crack growth curves, and their incorporation in the probabilistic assessment. The analysis yields negligible break probabilities, thus demonstrating the LBB behavior of the piping. This conclusion is validated by results of a sensitivity study with additional conservative assumptions and simplifications with respect to the initial crack size and material state. For the sake of simplicity, the blocking effect of the intact austenitic cladding on the crack extension, as well as the conditional probability of crack penetration through the wall during the service life are neglected in this investigation. Through an additional treatment of these issues a more realistic assessment is achieved, resulting in even smaller failure probabilities.


Author(s):  
Annette Karstensen ◽  
Jorge Guerra ◽  
David Knowles ◽  
Ohgeon Kwon

Ligament cracks were discovered during a cold survey in a main steam outlet header in a 250MW coal/gas fired unit following over 100,000 hours of service. Subsequent inspection revealed similar cracking in the same headers of two other units in the plant which had seen similar service. To ensure the safety of the headers a structural integrity programme was initiated by the operator, Genesis Energy, in order to determine their fitness for service. The maximum stress and stress range due to the temperature and pressure fluctuations during operation and starts was established by carrying out a detailed thermo-mechanical FE analysis, validated against detailed thermocouple measurements. The critical crack size was calculated and the time for the flaw to reach the critical flaw size was established by considering creep and fatigue crack growth mechanisms. Mechanical testing on material obtained during a repair of one of the headers was used to refine estimates of toughness and tensile properties. Moreover examination of the fracture face removed during the repair indicated that the crack growth was primarily due to fatigue. This was found to be due to frequent thermal cycling of the unit during nominally “steady state” operation. The crack growth rate established from the fracture surface analysis was compared with NDT measurements for validation of the fatigue crack growth model. The demonstrated predictability for the rate at which the ligament cracks are growing as a function of operation has provided Genesis with the opportunity develop a long term strategy for inspection, repair or replacement of their superheater headers.


2005 ◽  
Vol 128 (4) ◽  
pp. 889-895 ◽  
Author(s):  
K. S. Chan ◽  
M. P. Enright

This paper summarizes the development of a probabilistic micromechanical code for treating fatigue life variability resulting from material variations. Dubbed MICROFAVA (micromechanical fatigue variability), the code is based on a set of physics-based fatigue models that predict fatigue crack initiation life, fatigue crack growth life, fatigue limit, fatigue crack growth threshold, crack size at initiation, and fracture toughness. Using microstructure information as material input, the code is capable of predicting the average behavior and the confidence limits of the crack initiation and crack growth lives of structural alloys under LCF or HCF loading. This paper presents a summary of the development of the code and highlights applications of the model to predicting the effects of microstructure on the fatigue crack growth response and life variability of the α+β Ti-alloy Ti-6Al-4V.


Author(s):  
Baotong Lu ◽  
Stephen J. Hudak ◽  
Carl F. Popelar

Corrosion-fatigue in sour brine (SB) environments is a significant design consideration in deepwater floating production systems. Extensive testing over the past 20 years has shown that sour brine environments can reduce the fatigue life of line pipe steels by factors of 10× to 50× compared to fatigue lives measured in laboratory air; moreover, the extent of material degradation depends on a multitude of loading, environmental, and materials variables. Thus, in 2010 Southwest Research Institute (SwRI) embarked on an industry-supported Joint Industry Project (JIP) to develop a quantitative model to predict the effects of these variables on corrosion-fatigue crack growth rate (CFCGR) in offshore structure steels exposed to sour brine environments. Phase 1 of this JIP had successfully developed and validated such a model in the intermediate fatigue crack growth rate regime — i.e., with CFCGRs between 10−4 ∼ 10−2 mm/cycle. However, the Phase 1 model gave overly conservative CFCGRs at rates in the low growth rate regime below 1 × 10−4 mm/cycle, corresponding to S-N corrosion-fatigue lives in the high-cycle fatigue regime. It was hypothesized that these conservative predictions might result from the fact that the model did not consider effects of crack closure that could significantly reduce the effective crack-driving force in this low growth rate regime, a process that might also give rise to crack-size effects. Thus, the primary objective of the current study was to assess whether or not crack closure is responsible for the conservativism in the Phase 1 CFCGR model, as well as to explore related crack-size effects that in theory would not be predictable with conventional linear elastic fracture mechanics. Both of these possible effects are explored here using critical CFCGR experiments on X65 steel in sour brine under loading conditions for which the nominally applied mechanical driving force (ΔK), as well as the stress ratio (Rσ) and loading frequency were held constant, while crack closure measurements were made as the crack grew from 2 mm to about 10 mm. The crack closure measurements were made using elastic compliance measurements made with a specially designed, high-sensitivity clip gage. Results indicate that a crack-size dependence of CFCGR did occur and could be correlated using a crack-closure-corrected effective stress intensity factor (ΔKeff). These results have provided a foundation for extending the JIP’s Phase 1 CFCGR model into the low growth rate regime in the ongoing Phase 2 of the JIP.


Author(s):  
Yann Quéméner ◽  
Chien-Hua Huang ◽  
Chi-Fang Lee

This study investigates the fracture failure of longitudinal members including cracks. Specifically, this study employs the failure assessment diagram methodology to assess the conditions of failure at the crack tip. Based on various crack configurations, this study establishes the analytical formulations of the crack-tip condition that are validated using finite element analyses. In addition, the material toughness is expressed in terms of crack-tip opening displacement. This study evaluates the failure stress of representative cracked members as a function of the crack length. This enables determining critical crack lengths corresponding to the maximum stresses derived from extreme loads. Finally, this study uses simplified fatigue crack growth analyses to characterize the critical crack length in terms of fatigue life. For members located in the deck and bottom regions, the critical crack lengths correspond to the end of the assessed fatigue life. Therefore, the fracture resistance of the longitudinal members is satisfactory as it will not cause the premature loss of the component. This study also provides analytical formulations for crack-tip conditions that could be employed in a reliability study linking fatigue crack growth and fracture under extreme loads.


Author(s):  
Y. Kayser ◽  
S. Marie ◽  
M. H. Lacire ◽  
S. Chapuliot ◽  
B. Drubay

A large program is performed in France in order to develop, for the design and operating FBR plants, defect assessment procedures and Leak-Before-Break methods (L.B.B.). The main objective of this A16 guide is to propose analytical solutions at elevated temperature coherent with those proposed at low temperature by the RSE-M (RSE-M, 1997). The main items developed in this A16 guide for laboratory specimen, plates, pipes and elbows are the following: • Evaluation of ductile crack initiation and crack propagation based on the J parameter and material characteristics as JR-Δa curve or Ji / Gfr. Algorithms to evaluate the maximum endurable load under increasing load for through wall cracks or surface cracks are also proposed. • Determination of fatigue or creep-fatigue crack initiation based on the σd approach calculating stress and strain at a characteristic distance d from the crack tip. • Evaluation of fatigue crack growth based on da/dN-ΔKeff relationship with a ΔKeff derived from a simplified estimation of ΔJ for the cyclic load. • Evaluation of creep-fatigue crack growth adding the fatigue crack growth and the creep crack growth during the hold time derived from a simplified evaluation of C*. • Leak-Before-Break procedure. The fracture mechanic parameters determined in the A16 guide (KI, J, C*) are derived from handbooks and formula in accordance with those proposed in the RSE-M document for in service inspection. Those are: • The KI handbook for a large panel of surface and through-wall defects in plates, pipes and elbows. • Elastic stress and reference stress formula. • Analytical Js and Cs* formulations for mechanical and through thickness thermal load. The main part of the formula and assessment methodologies proposed in the A16 guide are included in a software, called MJSAM, developed under the MS Windows environment in support of the document. This allows a simple application of the analysis proposed in the document.


Author(s):  
Yoru Wada ◽  
Kouichi Takasawa ◽  
Ryoji Ishigaki ◽  
Yasuhiko Tanaka ◽  
Tadao Iwadate

Fatigue crack growth rates (da/dN) in up to 90MPa high-pressure gaseous hydrogen environments of quenched and tempered low alloy Cr-Mo steel: JIS-SCM435 with ultimate tensile strength level of 950MPa were measured utilizing a cycle, ranging from 0.3sec from 1000sec long with a road ratio R = 0.1. The longer cycle time tests (15sec to 1000sec per cycle) were conducted utilizing internal pressure test apparatus by utilizing cylinder (= CY) specimens, while shorter cycle (0.3sec to 25sec per cycle) tests were performed utilizing fatigue test machine using compact tension (= C(T)) specimens. Crack depth of CY specimens were measured by Time Of Flight Diffraction (TOFD) technique and the crack length of C(T) specimens were measured by compliance technique. Both C(T) and CY specimen showed accelerated sub-critical crack growth in gaseous hydrogen compared that in air or inert gas atmosphere. The effect of load ratio was also evaluated.


Sign in / Sign up

Export Citation Format

Share Document