Development of Japanese High Pressure Vessel Standard HPIS C106 With ASME Section VIII Division 3

Author(s):  
Susumu Terada

Many high pressure vessels are used in isostatic pressing, polyethylene process and crystal growth application. The design condition of these high pressure vessels becomes more severe in pressure, temperature and cyclic operation. It was desired that design code for such high pressure vessels be issued enabling more reasonable design than ASME Section VIII Div.1 and Div.2. Against above request, ASME Sec. VIII Div.3 was issued in 1997. While in Japan the subcommittee for high pressure vessels in HPI was started in October 1997 in order to issue the Japanese code for high pressure vessels. At first the background of ASME Div.3 was investigated and then “Rules for Construction of High Pressure Vessels: HPIS C 106” was issued in 2005. That was some differences from ASME Div.3, because we considered that ASME Div.3 should be modified. The author has also been appointed as a member of ASME SG-HPV Committee since 2003. The author has proposed some modification and addition of rules for ASME Div.3 since 2000 and most of them already have been approved and incorporated in ASME Div.3. The background of these modification and addition of rules are shown in this paper.

Author(s):  
Jan Keltjens ◽  
Philip Cornelissen ◽  
Peter Koerner ◽  
Waldemar Hiller ◽  
Rolf Wink

The ASME Section VIII Division 3 Pressure Vessel Design Code adopted in its 2004 edition a significant change of the design margin against plastic collapse. There are several reasons and justifications for this code change, in particular the comparison with design margins used for high pressure equipment in Europe. Also, the ASME Pressure Vessel Code books themselves are not always consistent with respect to design margin. This paper discusses not only the background material for the code change, but also gives some practical information on when pressure vessels could be designed to a thinner wall.


Author(s):  
David Fuenmayor ◽  
Rolf Wink ◽  
Matthias Bortz

There are numerous codes covering the design, manufacturing, inspection, testing, and operation of pressure vessels. These national or international codes aim at providing assurance regarding the safety and quality of pressure vessels. The development of the Chinese economy has led to a significant increase in the number of installed high-pressure vessels which in turn required a revision of the existing regulations. The Supervision Regulation on Safety Technology for Stationary Pressure Vessel TSG 21-2016 superseded the existing Super-High Pressure Vessel Safety and Technical Supervision Regulation TSG R0002-2005 in October of 2016. This new regulation covers, among others, the design, construction, and inspection of pressure vessels with design pressures above 100 MPa. This paper provides a technical comparison between the provisions given in TSG 21-2016 for super-high pressure vessels and the requirements in ASME Boiler and Pressure Vessel Code Section VIII Division 3.


Author(s):  
Zhiwei Chen ◽  
Tao Li ◽  
Guoyi Yang ◽  
Jinyang Zheng ◽  
Guide Deng

Abstract GB/T 34019-2017 “Ultra High Pressure Vessels” is the most important national standard that applies to pressure vessel which design pressure value is greater than or equal to 100MPa (14.5ksi). There is no standard for Ultra-high Pressure Vessel, Then this standard fills the gap in the standard system of pressure equipment in China. This paper mainly introduces the concept and main content of the new national standard, including the materials, design methods and nondestructive testing of ultra-high pressure vessel.


Author(s):  
Daniel Peters ◽  
Gregory Mital ◽  
Adam P. Maslowski

This paper provides an overview of the significant revisions pending for the upcoming 2017 edition of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC) Section VIII Division 3, Alternative Rules for Construction of High Pressure Vessels, as well as potential changes to future editions under consideration of the Subgroup on High Pressure Vessels (SG-HPV). Changes to the 2017 edition include the removal of material information used in the construction of composite reinforced pressure vessels (CRPV); this information has been consolidated to the newly-developed Appendix 10 of ASME BPVC Section X, Fiber-Reinforced Plastic Pressure Vessels. Similarly, the development of the ASME CA-1, Conformity Assessment Requirements standard necessitated removal of associated conformity assessment information from Section VIII Division 3. Additionally, requirements for the assembly of pressure vessels at a location other than that listed on the Certificate of Authorization have been clarified with the definitions of “field” and “intermediate” sites. Furthermore, certain design related issues have been addressed and incorporated into the current edition, including changes to the fracture mechanics rules, changes to wires stress limits in wire-wound vessels, and clarification on bolting and end closure requirements. Finally, the removal of Appendix B, Suggested Practice Regarding Post-Construction Requalification for High Pressure Vessels, will be discussed, including a short discussion of the new appendix incorporated into the updated edition of ASME PCC-3, Inspection Planning Using Risk Based Methods. Additionally, this paper discusses some areas in Section VIII Division 3 under consideration for improvement. One such area involves consolidation of material models presented in the book into a central area for easier reference. Another is the clarification of local strain limit analysis and the intended number and types of evaluations needed for the non-linear finite element analyses. The requirements for test locations in prolongations on forgings are also being examined as well as other material that can be used in testing for vessel construction. Finally, a discussion is presented on an ongoing debate regarding “occasional loads” and “abnormal loads”, their current evaluation, and proposed changes to design margins regarding these loads.


Author(s):  
Yu Xu ◽  
Kuao-John Young

Small size longitudinal holes are common in components of high pressure vessels. In fracture mechanics evaluation, longitudinal holes have not drawn as much attention as cross-bores. However, longitudinal holes become critical at certain locations for such assessments because of high stress concentration and short distance to vessel component wall. The high stress concentration can be attributed to three parts: global hoop stress that is magnified by the existence of the hole, local stresses due to pressure in the hole, and crack face pressure. In high pressure vessel design, axisymmetric models are used extensively in stress analyses, and their results are subsequently employed to identify critical locations for fracture mechanics evaluation. However, axisymmetric models ignore longitudinal holes and therefore cannot be used to identify the critical location inside the holes. This paper is intended to highlight the importance of including longitudinal holes in fracture mechanics evaluation, and to present a quick and effective way of evaluating high stress concentration at a longitudinal hole using the combined analytical solutions and axisymmetric stress analysis results, identifying critical locations and conducting fracture mechanics evaluation.


Author(s):  
Peter Koerner ◽  
Waldemar Hiller ◽  
Rolf Wink

High pressure systems like a LDPE-reactor may store a great amount of energy in the form of compressed gas. The way in which this energy is released in case of a failure is of paramount importance to the safety of the plant and its personnel. Catastrophic failure modes with a large gas release and possible metal splintering have to be avoided as far as technically possible. Therefore the failure mode needs to be analysed during the design of a high pressure system and taken into account. One important criterion for a safe pressure component is that a leak-before-burst behaviour can be ensured. This paper discusses the requirements for demonstration of this failure mode according to the design code for high pressure vessels ASME section VIII division 3. A full scale parts test using a DN-80, PN-3500 reactor tube section of a tubular LDPE-plant has been used to compare the code requirements with experimental results.


Author(s):  
Daniel Peters ◽  
Adam P. Maslowski

This paper is to give an overview of the major revisions pending in the upcoming 2015 edition of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC) Section VIII Division 3, Alternative Rules for Construction of High Pressure Vessels, and potential changes being considered by the Subgroup on High Pressure Vessels (SG-HPV) for future editions. This will include an overview of significant actions which will be included in the upcoming edition. This includes action relative to test locations in large and complex forgings, in response to a report from the U.S. Chemical Safety and Hazard Investigation Board (CSB) report of a failed vessel in Illinois. This will also include discussion of a long term issue recently completed on certification of rupture disk devices. Also included will be a discussion of a slight shift in philosophy which has resulted in the linear-elastic stress analysis section being moved to a Non-Mandatory Appendix and discussion of potential future of linear-elastic stress analysis in high pressure vessel design.


Author(s):  
Michael D. Mann

Design guidance for high pressure components, has undergone a dramatic change with the release of ASME Section VIII division 3 pressure vessel code. For the first time, a thorough design criteria is available for design of thick wall pressure vessels. The most critical components of a design are safety and reliability. Ultra high-pressure vessels, in most cases, do not have an “infinite” life. The design must therefore be “leak before break” and a design cycle life must be specified. This paper looks at the effects of fatigue on commercial high-pressure tubing under tri-axial fatigue. The tubing investigated is 316 stainless steel 9/16″ and 3/8″ diameter 4100 bar (60,000 psi) tubing. The testing was performed using a tri-axial fatigue machine originally designed by Dr. B. Crossland, Dr. J. L. M. Morrison and Dr. J. S. C. Perry in 1960 and upgraded by the Author. This investigation compares the fatigue life prediction per KD3 in the ASME pressure vessel code Section VIII division 3 and actual test results from the fatigue machine. This verification gives important reliability data for commercial hardware used in high-pressure piping.


Author(s):  
Fan Zhou ◽  
Zhiping Chen ◽  
Haigui Fan

An O-ring made of rubber exhibits excellent sealing performance with a wide range of applications. The highest sealing pressure can be up to 400MPa. The temperature ranges from −60 °C to 200 °C and the medium is low-corrosiveness. This paper proposes an O-ring sealing device for high pressure vessels, which can be opened and operated outside a cylinder. There are no bolts bearing the axial stress under the internal pressure load, and the sealing efficiency of this device is guaranteed by the dimension chain. The whole sealing device has no threaded connections except for the oriented screw which does not bear load under the working conditions. Based on this newly developed sealing device, a high pressure vessel with the design pressure of 60 MPa and the internal diameter of 700 mm used to simulate 6000 m deep sea environment is developed and investigated. This paper firstly introduces the rationale behind the design of the sealing structure for this high pressure vessel, and then discusses a finite element model of the cylinder end for this high pressure vessel and the stress classification method which is used to evaluate the safety of the critical sections. Lastly, the paper presents a set of experimental devices and a series of experiments which were carried out. The results show that the proposed sealing structure can be used in high pressure vessels. The results also verify the assumption of triangle contact pressure distribution between the shear ring and the cylinder end. It is hoped that this study will be of interest and value to researchers when they design the similar structures in the future.


Author(s):  
Adam P. Maslowski ◽  
Gregory Mital ◽  
Daniel Peters ◽  
Kannan Subramanian

Abstract This paper provides an overview of the significant revisions to the upcoming 2019 edition of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC) Section VIII Division 3, Alternative Rules for Construction of High Pressure Vessels, as well as potential changes to future editions under consideration of the Subgroup on High Pressure Vessels (SG-HPV).


Sign in / Sign up

Export Citation Format

Share Document