Leak-Before-Burst Testing of a High Pressure Tube

Author(s):  
Peter Koerner ◽  
Waldemar Hiller ◽  
Rolf Wink

High pressure systems like a LDPE-reactor may store a great amount of energy in the form of compressed gas. The way in which this energy is released in case of a failure is of paramount importance to the safety of the plant and its personnel. Catastrophic failure modes with a large gas release and possible metal splintering have to be avoided as far as technically possible. Therefore the failure mode needs to be analysed during the design of a high pressure system and taken into account. One important criterion for a safe pressure component is that a leak-before-burst behaviour can be ensured. This paper discusses the requirements for demonstration of this failure mode according to the design code for high pressure vessels ASME section VIII division 3. A full scale parts test using a DN-80, PN-3500 reactor tube section of a tubular LDPE-plant has been used to compare the code requirements with experimental results.

Author(s):  
Jan Keltjens ◽  
Philip Cornelissen ◽  
Peter Koerner ◽  
Waldemar Hiller ◽  
Rolf Wink

The ASME Section VIII Division 3 Pressure Vessel Design Code adopted in its 2004 edition a significant change of the design margin against plastic collapse. There are several reasons and justifications for this code change, in particular the comparison with design margins used for high pressure equipment in Europe. Also, the ASME Pressure Vessel Code books themselves are not always consistent with respect to design margin. This paper discusses not only the background material for the code change, but also gives some practical information on when pressure vessels could be designed to a thinner wall.


Author(s):  
Susumu Terada

Many high pressure vessels are used in isostatic pressing, polyethylene process and crystal growth application. The design condition of these high pressure vessels becomes more severe in pressure, temperature and cyclic operation. It was desired that design code for such high pressure vessels be issued enabling more reasonable design than ASME Section VIII Div.1 and Div.2. Against above request, ASME Sec. VIII Div.3 was issued in 1997. While in Japan the subcommittee for high pressure vessels in HPI was started in October 1997 in order to issue the Japanese code for high pressure vessels. At first the background of ASME Div.3 was investigated and then “Rules for Construction of High Pressure Vessels: HPIS C 106” was issued in 2005. That was some differences from ASME Div.3, because we considered that ASME Div.3 should be modified. The author has also been appointed as a member of ASME SG-HPV Committee since 2003. The author has proposed some modification and addition of rules for ASME Div.3 since 2000 and most of them already have been approved and incorporated in ASME Div.3. The background of these modification and addition of rules are shown in this paper.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
R. D. Dixon ◽  
E. H. Perez

The available design formulas for flat heads and blind end closures in the ASME Code, Section VIII, Divisions 1 and 2 are based on bending theory and do not apply to the design of thick flat heads used in the design of high pressure vessels. This paper presents new design formulas for thickness requirements and determination of peak stresses and stress distributions for fatigue and fracture mechanics analyses in thick blind ends. The use of these proposed design formulas provide a more accurate determination of the required thickness and fatigue life of blind ends. The proposed design formulas are given in terms of the yield strength of the material and address the fatigue strength at the location of the maximum stress concentration factor. Introduction of these new formulas in a nonmandatory appendix of Section VIII, Division 3 is recommended after committee approval.


Author(s):  
John Montoya ◽  
Donald Ketchum ◽  
Matthew Edel

It is common practice to proof test high pressure vessels prior to their use in the field. One technique for leak testing these vessels is submersion in water. A test failure at high pneumatic pressure and can pose several hazards to nearby personnel, such as projectile launch and blast loads. Submerged underwater testing can provide some level of protection from these hazards. However, it is largely unknown how much water cover is needed to prevent a projectile from escaping. The purpose of this test program was to record the mitigating effects of water on hazards caused by a sudden pressure vessel failure. The test program entails submerging a pressure vessel underwater inside a tank. The vessel is then pressurized to failure, releasing a blast wave and launching a projectile. The event is recorded using high speed photography which is used to observe the effects of the gas release and the projectile motion. A discussion of the test events and associated physics is provided.


Author(s):  
David Fuenmayor ◽  
Rolf Wink ◽  
Matthias Bortz

There are numerous codes covering the design, manufacturing, inspection, testing, and operation of pressure vessels. These national or international codes aim at providing assurance regarding the safety and quality of pressure vessels. The development of the Chinese economy has led to a significant increase in the number of installed high-pressure vessels which in turn required a revision of the existing regulations. The Supervision Regulation on Safety Technology for Stationary Pressure Vessel TSG 21-2016 superseded the existing Super-High Pressure Vessel Safety and Technical Supervision Regulation TSG R0002-2005 in October of 2016. This new regulation covers, among others, the design, construction, and inspection of pressure vessels with design pressures above 100 MPa. This paper provides a technical comparison between the provisions given in TSG 21-2016 for super-high pressure vessels and the requirements in ASME Boiler and Pressure Vessel Code Section VIII Division 3.


Author(s):  
J. Robert Sims

Offshore oil and gas wells are being drilled into formations that have pressures up to 200 MPa (30,000 psi) and temperatures over 175°C (350°F). Most of the existing API Standards for pressure equipment, such as valves and blow out preventers (BOPs), are limited to pressures of about 100 MPa (15,000 psi). The design requirements in ASME Section VIII Division 3, Alternative Rules for Construction of High Pressure Vessels (Div. 3), can be adapted for the design of this equipment with some modifications. Since the strength of the materials used in these applications is limited due to environmental cracking concerns, it is necessary to accept some local yielding in areas of stress concentrations. Therefore, it is particularly important to apply the elastic-plastic analysis requirements in Div. 3 with appropriate limits on local strain as well as the robust fracture mechanics based fatigue analysis requirements. Paper published with permission.


Author(s):  
Daniel Peters ◽  
Gregory Mital ◽  
Adam P. Maslowski

This paper provides an overview of the significant revisions pending for the upcoming 2017 edition of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC) Section VIII Division 3, Alternative Rules for Construction of High Pressure Vessels, as well as potential changes to future editions under consideration of the Subgroup on High Pressure Vessels (SG-HPV). Changes to the 2017 edition include the removal of material information used in the construction of composite reinforced pressure vessels (CRPV); this information has been consolidated to the newly-developed Appendix 10 of ASME BPVC Section X, Fiber-Reinforced Plastic Pressure Vessels. Similarly, the development of the ASME CA-1, Conformity Assessment Requirements standard necessitated removal of associated conformity assessment information from Section VIII Division 3. Additionally, requirements for the assembly of pressure vessels at a location other than that listed on the Certificate of Authorization have been clarified with the definitions of “field” and “intermediate” sites. Furthermore, certain design related issues have been addressed and incorporated into the current edition, including changes to the fracture mechanics rules, changes to wires stress limits in wire-wound vessels, and clarification on bolting and end closure requirements. Finally, the removal of Appendix B, Suggested Practice Regarding Post-Construction Requalification for High Pressure Vessels, will be discussed, including a short discussion of the new appendix incorporated into the updated edition of ASME PCC-3, Inspection Planning Using Risk Based Methods. Additionally, this paper discusses some areas in Section VIII Division 3 under consideration for improvement. One such area involves consolidation of material models presented in the book into a central area for easier reference. Another is the clarification of local strain limit analysis and the intended number and types of evaluations needed for the non-linear finite element analyses. The requirements for test locations in prolongations on forgings are also being examined as well as other material that can be used in testing for vessel construction. Finally, a discussion is presented on an ongoing debate regarding “occasional loads” and “abnormal loads”, their current evaluation, and proposed changes to design margins regarding these loads.


Author(s):  
Daniel T. Peters ◽  
Myles Parr

Abstract The use of high pressure vessels for the purpose of storing gaseous fuels for land based transportation application is becoming common. Fuels such as natural gas and hydrogen are currently being stored at high pressure for use in fueling stations. This paper will investigate the use of various levels of autofrettage in high pressure storage cylinders and its effects on the life of a vessel used for hydrogen storage. Unlike many high-pressure vessels, the life is controlled by fatigue when cycled between a high pressure near the design pressure and a lower pressure due to the emptying of the content of the vessels. There are many misunderstandings regarding the need for cyclic life assessment in storage vessels and the impact that hydrogen has on that life. Some manufacturers are currently producing vessels using ASME Section VIII Division 1 to avoid the requirements for evaluation of cylinders in cyclic service. There are currently rules being considered in all of ASME Section VIII Division 1 and Division 2, and even potentially for Appendix 8 of ASME Section X. Recommendations on updating the ASME codes will be considered in this report.


Sign in / Sign up

Export Citation Format

Share Document