Design and Testing of an Explosively Loaded Pressure Vessel System for Proton Radiography

Author(s):  
Dusan Spernjak ◽  
Kevin Fehlmann ◽  
Devin Cardon ◽  
Nathan Yost ◽  
Dallas Hill ◽  
...  

Abstract A containment system is being developed to expand the capability of proton radiography of small-scale shock physics experiments at Los Alamos National Laboratory (LANL). The detonation of high explosives (HE) drives materials to extreme loading conditions, which are imaged using a proton beam and an imaging system. A qualified confinement and containment boundary needs to exist between a high-explosive experiment and the environment, and is comprised of the Inner Pressure Confinement Vessel (IPCV) and the Outer Pressure Containment Vessel (OPCV). The Inner Vessel is designed to the criteria of the ASME Boiler and Pressure Vessel Code, Section VIII, Division 3, Code Case 2564. The vessel contains an Experimental Physics Package, fragment mitigation structure, and radiographic windows. The windows need to minimize radiographic blur contribution (thin, radiographically transparent material such as Beryllium) over the field of view for imaging, but also need to maintain the pressure boundary during and after the dynamic event. Further, the vessel covers need to seal before, during, and after the experiment . In addition, the covers have miscellaneous feedthroughs, to enable high-voltage signal (for HE detonator), instrumentation and control signals (e.g. valves, pressure and vacuum gauge, optical fibers). We present the preliminary design, analyses, and testing of the Inner Vessel components.

Author(s):  
Dusan Spernjak ◽  
Robert Valdiviez ◽  
Kevin Fehlmann ◽  
Dallas Hill ◽  
Joshem Gibson ◽  
...  

Abstract A unique containment and confinement system is under development to conduct small explosively driven physics experiments containing hazardous materials at the Proton Radiography facility at Los Alamos National Laboratory (LANL). In these experiments, the detonation of high explosives (HE) is used to drive materials to extreme loading conditions, where some of the materials tested can be extremely hazardous (e.g. nuclear materials). The main components of the system are the Inner Pressure Confinement Vessel (IPCV, which hosts the physics experiment), the Outer Pressure Containment Vessel (OPCV) and Beam Pipes and Auxiliary Hardware (BPAH). This paper describes the design and preliminary analyses of the IPCV. The body of the IPCV, also referred to as the Inner Vessel, is being designed to the criteria of the ASME Boiler and Pressure Vessel Code, Section VIII, Division 3, Code Case 2564, with the exception of the materials of construction. The closure covers have different devices mounted on them, such as feedthrough devices for sending or receiving electrical and optical signals across the pressure boundary, and valves for venting the vessel interior. The unique feature in the vessel design are the radiographic windows, tentatively made of Beryllium, which need to be strong enough to maintain the pressure boundary during dynamic events, while being radiographically low-attenuating for the purpose of proton imaging.


Author(s):  
Kevin Fehlmann ◽  
Dusan Spernjak ◽  
Devin Cardon ◽  
Dallas Hill ◽  
Nathan Yost ◽  
...  

Abstract A containment and confinement pressure vessel system is under development to expand the capability to perform small explosively driven physics experiments at the Proton Radiography facility at Los Alamos National Laboratory (LANL). Two barriers of this vessel system are the Inner Pressure Confinement Vessel (IPCV) and the Outer Pressure Containment Vessel (OPCV). To achieve high spatial resolution of proton images, radiographic windows (covers) of the Inner Vessel are located extremely close to the experiment containing high explosive (HE). While the Inner Vessel is designed to meet the ASME Boiler and Pressure Vessel Code, Section VIII, Division 3, Code Case 2564 criteria, the small separation between the explosive and the pressure-retaining boundary presents a unique requirement for designing dynamically loaded vessels. We present numerical simulations of HE detonation in the Inner Vessel for several HE configurations. Eularian hydrodynamic code is used to calculate pressure-time history on the inner vessel surface. The pressure-time loading is then imported into a Langrangian structural model, and high-fidelity structural dynamic simulations are performed to obtain stress and strain as functions of time. Simulations are compared against experimental measurements from dynamic testing. Dynamic experiments are conducted in a low-fidelity (LoFi) vessel prototype, to measure the pressure and strain in regions of interest in different vessel locations (body, radiographic windows, covers).


Author(s):  
John Bernardin ◽  
David Hathcoat ◽  
David Sattler ◽  
Dusan Spernjak ◽  
Erik Swensen ◽  
...  

Abstract A nested confinement (inner) and containment (outer) vessel system is under development to conduct small shock-physics experiments in a high-speed proton imaging facility at Los Alamos National Laboratory. The dual vessel system is necessary to serve as a qualified confinement system and containment buffer boundary between a high explosives experiment and the environment. The paper describes the preliminary engineering design and analyses that have been performed on the outer containment pressure vessel, following ASME BPVC Sect. VIII Div. 1, for both pressure and vacuum conditions. Other engineering attributes which will be presented include an internal support structure for a nested inner vessel, an external integrated support and alignment structure for the complete vessel system, and the vacuum and gas handling equipment.


2015 ◽  
Vol 08 ◽  
pp. 165-180 ◽  
Author(s):  
Frank E. Merrill

Protons were first investigated as radiographic probes as high energy proton accelerators became accessible to the scientific community in the 1960s. Like the initial use of X-rays in the 1800s, protons were shown to be a useful tool for studying the contents of opaque materials, but the electromagnetic charge of the protons opened up a new set of interaction processes which complicated their use. These complications in combination with the high expense of generating protons with energies high enough to penetrate typical objects resulted in proton radiography becoming a novelty, demonstrated at accelerator facilities, but not utilized to their full potential until the 1990s at Los Alamos. During this time Los Alamos National Laboratory was investigating a wide range of options, including X-rays and neutrons, as the next generation of probes to be used for thick object flash radiography. During this process it was realized that the charge nature of the protons, which was the source of the initial difficulty with this idea, could be used to recover this technique. By introducing a magnetic imaging lens downstream of the object to be radiographed, the blur resulting from scattering within the object could be focused out of the measurements, dramatically improving the resolution of proton radiography of thick systems. Imaging systems were quickly developed and combined with the temporal structure of a proton beam generated by a linear accelerator, providing a unique flash radiography capability for measurements at Los Alamos National Laboratory. This technique has now been employed at LANSCE for two decades and has been adopted around the world as the premier flash radiography technique for the study of dynamic material properties.


Author(s):  
Yogeshwar Hari ◽  
Ram Munjal ◽  
Chawki Obeid

The main objective of this paper is to improve a jacketed vessel. The jacketed vessel is usually chosen to heat the contents of the vessel. The chamber or annulus contains fluid under pressure to heat the inner vessel contents. The initial over-all dimensions of the vessel are based on the capacity of the stored liquid. The design was in accordance with the ASME Boiler & Pressure Vessel Code, Section VIII, Div 1. The jacketed vessel bottom head and jacket bottom head are being improved to withstand internal and external design pressures. Bottom head of the jacket can be reinforced in one of the three ways, namely: (1) rings which are radial (these rings also create flow for the fluid); (2) attachment of the rings to the bottom jacket head with stays, since rings cannot be physically welded to the bottom jacket; or (3) there is a possibility, the new bottom head and jacketed head combination can be cast, but that would not be economically feasible. This leads to the following six configurations considered in this paper and they are: (1) internal pressure of 50 psi, (2) external pressure + vacuum pressure of 65 psi, (3) reinforcement with 5 rings with external pressure of 65 psi, (4) rings welded with the bottom jacket head with external pressure of 65 psi, (5) welded with stays on ring location (stay diameter of 1 inch) with external pressure of 65 psi, and (6) welded with stays on ring location (stay diameter of 1.5 inch) with external pressure of 65 psi. The pattern of stays chosen for this analysis is one of uniform distribution on ring locations, which are radially situated. The design dimensions based on Code sizing are used to recalculate the stresses for the jacket vessel. The dimensional jacketed vessel is modeled using STAAD III Finite Element Analysis (FEA) software. The design is found to be safe for the specific configuration considered herein with stays.


2021 ◽  
Author(s):  
Matthew Fister ◽  
Kevin Fehlmann ◽  
Dusan Spernjak

Abstract Los Alamos National Laboratory (LANL) designs and utilizes impulsively loaded pressure vessels for the confinement of experimental configurations involving explosives. For physics experiments with hazardous materials, a two-barrier containment system is needed, where an impulsively (or, explosively) loaded pressure vessel is assembled as an inner confinement vessel, inside an outer containment vessel (subject to quasi-static load in the event of confinement vessel breach). Design of the inner and outer vessels and support structure must account for any directional loads imparted by the blast loading on the inner vessel. Typically there is a shock-attenuating assembly between the inner confinement and outer containment pressure barriers, which serves to mitigate any dynamic load transfer from inner to outer vessel. Depending on the shock-attenuating approach, numerical predictions of these reaction loads can come with high levels of uncertainty due to model sensitivities. Present work here focuses on the numerical predictions and measurements of the reaction loads due to detonating 30 g of TNT equivalent in the Inner Pressure Confinement Vessel (IPCV) for proton imaging of small-scale shock physics experiments at LANL. Direct reaction load measurements from IPCV testing is presented alongside numerical predictions. Using the experimental measurements from the firing site, we refine the tools and methodology utilized for reaction load predictions and explore the primary model sensitivities which contribute to uncertainties. The numerical tools, modeling methodology, and primary drivers of model uncertainty identified here will improve the capability to model detonation experiments and enable design load calculations of other impulsively loaded pressure vessels with higher accuracy.


Author(s):  
E. Guardincerri ◽  
J. D. Bacon ◽  
N. Barros ◽  
C. Blasi ◽  
L. Bonechi ◽  
...  

The dome of Santa Maria del Fiore, Florence Cathedral, was built between 1420 and 1436 by architect Filippo Brunelleschi and it is now cracking under its own weight. Engineering efforts are under way to model the dome's structure and reinforce it against further deterioration. According to some scholars, Brunelleschi might have built reinforcement structures into the dome itself; however, the only known reinforcement is a wood chain 7.75 m above the springing of the Cupola. Multiple scattering muon radiography is a non-destructive imaging method that can be used to image the interior of the dome's wall and therefore ascertain the layout and status of any iron substructure in it. A demonstration measurement was performed at the Los Alamos National Laboratory on a mock-up wall to show the feasibility of the work proposed, and a lightweight and modular imaging system is currently under construction. We will discuss here the results of the demonstration measurement and the potential of the proposed technique, describe the imaging system under construction and outline the plans for the measurement. This article is part of the Theo Murphy meeting issue ‘Cosmic-ray muography’.


Author(s):  
William F. Chambers ◽  
Arthur A. Chodos ◽  
Roland C. Hagan

TASK8 was designed as an electron microprobe control program with maximum flexibility and versatility, lending itself to a wide variety of applications. While using TASKS in the microprobe laboratory of the Los Alamos National Laboratory, we decided to incorporate the capability of using subroutines which perform specific end-member calculations for nearly any type of mineral phase that might be analyzed in the laboratory. This procedure minimizes the need for post-processing of the data to perform such calculations as element ratios or end-member or formula proportions. It also allows real time assessment of each data point.The use of unique “mineral codes” to specify the list of elements to be measured and the type of calculation to perform on the results was first used in the microprobe laboratory at the California Institute of Technology to optimize the analysis of mineral phases. This approach was used to create a series of subroutines in TASK8 which are called by a three letter code.


Sign in / Sign up

Export Citation Format

Share Document