An Investigation on Real and Imaginary Energy Transfer Mechanism Caused in Rotating Flow Passage of Centrifugal Pump

Author(s):  
Takaharu Tanaka ◽  
Chao Liu

Hydraulic energy is constructed from real and imaginary energies. Their acting directions are normal to each other. Their physical properties are quite different. All the physical parameters, such as force, velocity, and acceleration therefore consist of two different type real and imaginary functions. Physically, there are three different types of fluid particles rotational motion: straightly forward non-rotational motion, which is based upon kinetic real physical parameters, circularly forward rotational motion, which is based upon un-kinetic imaginary physical parameters, and their combined rotational motion. Their interrelation is shown in diagram.

2005 ◽  
Author(s):  
Takaharu Tanaka

All the physical parameters, such as energy, force, velocity, and acceleration are constructed from two different kinds; one is real and the other is imaginary. Their acting directions are normal to each other. The former acts horizontal direction and causes visible kinetic movement on fluid particle. All the supplied energy is utilized and consumed. The latter acts vertical direction but does not cause any visible kinetic movement on fluid particle. All the energy transfer from mechanical to hydraulic and from hydraulic to mechanical is caused by the imaginary parameters in vertical direction.


Volume 3 ◽  
2004 ◽  
Author(s):  
Takaharu Tanaka ◽  
Chao Liu

Main purpose of investigation has been put on the hydraulic energy losses caused in the rotating flow passage of centrifugal pump. Result of discussion shows that fundamental poor efficiency is brought by the fluid particles poor rotational motion at the trailing edge of impeller outlet, including the rotational motion caused in the flow passage between impeller blades rather than the hydraulic energy losses caused in the rotating flow passage. Therefore, our main purpose of investigation has to be put on the way rather to the fluid particles rotational motion caused at the trailing edge of impeller outlet and that caused between impeller blades.


Author(s):  
Takaharu Tanaka

Hydraulic energy is constructed from two different kinds hydraulic energies. One is the singled irreversible kinetic hydraulic energy that acts horizontal direction. It produces mass weight flow rate. The other is the un-kinetic reversible potential energy. Potential energy is stored on the fluid particle in the form of coupled (or twined) real and imaginary energies. Typical of real energy is potential energy, which is equivalent to pump and water turbine heads. It is caused by the real gravitational acceleration and directs vertical downward. Real potential head is balanced with the imaginary force, which is caused by the imaginary acceleration whose magnitude is equivalent to real gravitational acceleration but its acting direction is opposed to that, therefore, vertical upward. Therefore, to produce the higher real potential pump head that directs vertical downward, the imaginary centrifugal force, whose acting direction is opposed to real potential head, has to be produced and act on the fluid particle vertical upward as much by the impelling action in the rotating flow passage of centrifugal pump.


Author(s):  
Takaharu Tanaka

Impeller blade’s rotational motion causes centrifugal force on fluid particle. It directs radial outward. However, the flow rate, that is, radial outward flow is not caused by centrifugal force in centrifugal pump. Tangential forward force, which is in the direction perpendicular to rotational radius, causes tangential forward movement on fluid particle under the radial balance of centrifugal and centripetal forces in the rotating flow passage of centrifugal pump and it causes the flow rate. And the head is caused by centrifugal force and equivalent to centripetal force, which acts on fluid particle radial inward. Which is equivalent to external force at the trailing edge of impeller outlet.


2017 ◽  
Vol 65 (2) ◽  
pp. 110-120 ◽  
Author(s):  
Zhe Chen ◽  
Jiu-Hui Wu ◽  
A-Dan Ren ◽  
Xin Chen ◽  
Zhen Huang

2021 ◽  
pp. 118082
Author(s):  
Hai Ma ◽  
Xiaodan Wang ◽  
Feifei Chen ◽  
Jiafan Chen ◽  
Xionghui Zeng ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 312
Author(s):  
Yusuf Tutel ◽  
Gökhan Sevinç ◽  
Betül Küçüköz ◽  
Elif Akhuseyin Yildiz ◽  
Ahmet Karatay ◽  
...  

Meso-substituted borondipyrromethene (BODIPY)-porphyrin compounds that include free base porphyrin with two different numbers of BODIPY groups (BDP-TTP and 3BDP-TTP) were designed and synthesized to analyze intramolecular energy transfer mechanisms of meso-substituted BODIPY-porphyrin dyads and the effect of the different numbers of BODIPY groups connected to free-base porphyrin on the energy transfer mechanism. Absorption spectra of BODIPY-porphyrin conjugates showed wide absorption features in the visible region, and that is highly valuable to increase light-harvesting efficiency. Fluorescence spectra of the studied compounds proved that BODIPY emission intensity decreased upon the photoexcitation of the BODIPY core, due to the energy transfer from BODIPY unit to porphyrin. In addition, ultrafast pump-probe spectroscopy measurements indicated that the energy transfer of the 3BDP-TTP compound (about 3 ps) is faster than the BDP-TTP compound (about 22 ps). Since the BODIPY core directly binds to the porphyrin unit, rapid energy transfer was seen for both compounds. Thus, the energy transfer rate increased with an increasing number of BODIPY moiety connected to free-base porphyrin.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 711
Author(s):  
Zdzisław Kaliniewicz ◽  
Dariusz J. Choszcz

Viburnum is a genus of colorful and ornamental plants popular in landscape design on account of their high esthetic appeal. The physical properties of viburnum seeds have not been investigated in the literature to date. Therefore, the aim of this study was to characterize the seeds of selected Viburnum species and to search for potential relationships between their physical attributes for the needs of seed sorting operations. The basic physical parameters of the seeds of six Viburnum species were measured, and the relationships between these attributes were determined in correlation and regression analyses. The average values of the evaluated parameters were determined in the following range: terminal velocity—from 5.6 to 7.9 m s−1, thickness—from 1.39 to 1.87 mm, width—from 3.59 to 6.33 mm, length—from 5.58 to 7.44 mm, angle of external friction—from 36.7 to 43.8°, mass—from 16.7 to 35.0 mg. The seeds of V. dasyanthum, V. lentago and V. sargentii should be sorted in air separators, and the seeds of V. lantana and V. opulus should be processed with the use of mesh screens with round apertures to obtain uniform size fractions. The seeds of V. rhytodophyllum cannot be effectively sorted into batches with uniform seed mass, but they can be separated into groups with similar dimensions.


Sign in / Sign up

Export Citation Format

Share Document