An Investigation on Energy Transfer Mechanism Caused in Rotating Flow Passage of Turbomachinery and Practical Performance Characteristic Curve

Author(s):  
Takaharu Tanaka

Hydraulic energy is constructed from two different kinds hydraulic energies. One is the singled irreversible kinetic hydraulic energy that acts horizontal direction. It produces mass weight flow rate. The other is the un-kinetic reversible potential energy. Potential energy is stored on the fluid particle in the form of coupled (or twined) real and imaginary energies. Typical of real energy is potential energy, which is equivalent to pump and water turbine heads. It is caused by the real gravitational acceleration and directs vertical downward. Real potential head is balanced with the imaginary force, which is caused by the imaginary acceleration whose magnitude is equivalent to real gravitational acceleration but its acting direction is opposed to that, therefore, vertical upward. Therefore, to produce the higher real potential pump head that directs vertical downward, the imaginary centrifugal force, whose acting direction is opposed to real potential head, has to be produced and act on the fluid particle vertical upward as much by the impelling action in the rotating flow passage of centrifugal pump.

2005 ◽  
Author(s):  
Takaharu Tanaka

All the physical parameters, such as energy, force, velocity, and acceleration are constructed from two different kinds; one is real and the other is imaginary. Their acting directions are normal to each other. The former acts horizontal direction and causes visible kinetic movement on fluid particle. All the supplied energy is utilized and consumed. The latter acts vertical direction but does not cause any visible kinetic movement on fluid particle. All the energy transfer from mechanical to hydraulic and from hydraulic to mechanical is caused by the imaginary parameters in vertical direction.


Author(s):  
Takaharu Tanaka ◽  
Chao Liu

Hydraulic energy is constructed from real and imaginary energies. Their acting directions are normal to each other. Their physical properties are quite different. All the physical parameters, such as force, velocity, and acceleration therefore consist of two different type real and imaginary functions. Physically, there are three different types of fluid particles rotational motion: straightly forward non-rotational motion, which is based upon kinetic real physical parameters, circularly forward rotational motion, which is based upon un-kinetic imaginary physical parameters, and their combined rotational motion. Their interrelation is shown in diagram.


Author(s):  
Takaharu Tanaka

Mechanical force caused by mechanical energy acts real and imaginary forces on impeller blade. Therefore, impeller blade moves in the direction of real force, straightly forward in the direction of tangent perpendicular to rotational radius and the direction of imaginary force, circularly forward in the direction of tangent perpendicular to rotational radius. Former real movement causes on fluid particle radial outward movement, resulting to flow rate Q. Latter imaginary movement causes on fluid particle a rotational motion under the external centripetal and imaginary centrifugal force, resulting to pump head. Pump head is equivalent to external centripetal force and balanced with imaginary centrifugal force in the rotating flow passage.


Author(s):  
Takaharu Tanaka

Hydraulic energy balance is held in radial direction at trailing edge of impeller outlet in pump and at leading edge of impeller inlet in water turbine. Hydraulic energy output at trailing edge of impeller outlet in pump and hydraulic energy input at leading edge of impeller inlet in water turbine appear in the form of product of fluid particle’s rotational and tangential movement. The rate of hydraulic energy head H and flow rate Q is equivalent to the rate of centrifugal and tangential forces, hence equivalent to rate of rotational and tangential distances of which fluid particle had moved at those sections.


Author(s):  
Takaharu Tanaka

Impeller blade’s rotational motion causes centrifugal force on fluid particle. It directs radial outward. However, the flow rate, that is, radial outward flow is not caused by centrifugal force in centrifugal pump. Tangential forward force, which is in the direction perpendicular to rotational radius, causes tangential forward movement on fluid particle under the radial balance of centrifugal and centripetal forces in the rotating flow passage of centrifugal pump and it causes the flow rate. And the head is caused by centrifugal force and equivalent to centripetal force, which acts on fluid particle radial inward. Which is equivalent to external force at the trailing edge of impeller outlet.


2011 ◽  
Vol 63 (8) ◽  
pp. 1765-1771 ◽  
Author(s):  
S. Heubeck ◽  
R. M. de Vos ◽  
R. Craggs

The biological treatment of wastewater could yield high energy fuels such as methane and alcohols, however most conventional treatment systems do not recover this energy potential. With a simple model of the energy yields of various wastewater treatment technologies it is possible to demonstrate how minor shifts in technology selection can lead the industry from being identified as predominantly energy intensive, to being recognised as a source of energy resources. The future potential energy yield is estimated by applying energy yield factors to alternative use scenarios of the same wastewater loads. The method for identifying the energy potential of wastewater was demonstrated for the New Zealand wastewater sector, but can equally be applied to other countries or regions. The model suggests that by using technologies that maximise the recovery of energy from wastewater, the potential energy yield from this sector would be substantially increased (six fold for New Zealand).


Author(s):  
Alessio Castorrini ◽  
Paolo Venturini ◽  
Alessandro Corsini

Abstract In the last decade, the authors focused their research in the development and implementation of accurate numerical tools and methods able to predict the erosion and deposit on turbomachinery blades operating with particle-laden flows. These models and methods give complete three-dimensional description of the phenomenon, but their application is limited to a single working condition of the blade. The present paper covers the first step in the definition of a general methodology to extend the applicability of these tools to a full range of the machines operating conditions. The method aims to obtain an instantaneous prediction of the expected damage pattern for a blade section, given its local working condition in terms of relative fluid-particle flow. The final result is based on a precomputed database associated to the blade section, where the single element is obtained by computing the erosion damage using the aforementioned numerical tools. This paper will show the methodology to obtain the database associated to the midspan section of an induced draft fan subjected to erosion due to coal ash particle. The final database is then used to predict the damage state of the section associated to a given point in the characteristic curve of the fan.


2020 ◽  
Vol 51 (6) ◽  
pp. 95-109
Author(s):  
Rakesh Chandmal Sharma ◽  
Sakshi Sharma ◽  
Sunil Kumar Sharma ◽  
Neeraj Sharma

Formulation of a rail vehicle model using Lagrange’s method requires the system’s kinetic energy, potential energy, spring potential energy, Rayleigh’s dissipation energy and generalized forces to be determined. This article presents a detailed analysis of generalized forces developed at wheel–rail contact point for 27 degrees of freedom–coupled vertical–lateral model of a rail vehicle formulated using Lagrange’s method and subjected to random track irregularities. The vertical–lateral ride comfort of the vehicle and the ride index of the vehicle are evaluated based on ISO 2631-1 comfort specifications and stability is determined using eigenvalue analysis. The parameters that constitute the generalized forces and critically influence ride and stability have been identified and their influences on the same have been analysed in this work.


Volume 3 ◽  
2004 ◽  
Author(s):  
Takaharu Tanaka ◽  
Chao Liu

Main purpose of investigation has been put on the hydraulic energy losses caused in the rotating flow passage of centrifugal pump. Result of discussion shows that fundamental poor efficiency is brought by the fluid particles poor rotational motion at the trailing edge of impeller outlet, including the rotational motion caused in the flow passage between impeller blades rather than the hydraulic energy losses caused in the rotating flow passage. Therefore, our main purpose of investigation has to be put on the way rather to the fluid particles rotational motion caused at the trailing edge of impeller outlet and that caused between impeller blades.


Sign in / Sign up

Export Citation Format

Share Document