Detailed Impact Analyses for Development of the Next Generation Rail Tank Car: Part 1—Model Development and Assessment of Existing Tank Car Designs

Author(s):  
Steven W. Kirkpatrick

Significant research has been conducted over the past few years to develop improved railroad tank cars that maintain tank integrity for more severe accident conditions than current equipment. The approach taken in performing this research is to define critical collision conditions, evaluate the behavior of current design equipment in these scenarios, and develop alternative strategies for increasing the puncture resistance. The evaluations are being performed with finite element models of the tank cars incorporating a high level of detail. Both laboratory scale and full-scale impact tests were performed to validate the modeling and ultimately compare the effectiveness of current and alternative equipment designs. This paper describes the development of the detailed finite element model of the tank car and the use of the model for impact and puncture analyses. The validation of the model using the results of the full-scale impact tests is presented. The subsequent application of the model to assess the puncture resistance of existing tank car designs is discussed.

Author(s):  
Steven W. Kirkpatrick

Significant research has been conducted over the past few years to develop improved railroad tank cars that maintain tank integrity for more severe accident conditions than current equipment. The approach taken in performing this research is to define critical collision conditions, evaluate the behavior of current design equipment in these scenarios, and develop alternative strategies for increasing the puncture resistance. The evaluations are being performed with finite element models of the tank cars incorporating a high level of detail. Both laboratory scale and full-scale impact tests were performed to validate the modeling and ultimately compare the effectiveness of current and alternative equipment designs. This paper describes the use of the detailed finite element impact and puncture analyses to assess the performance of advanced puncture protection concepts.


Author(s):  
Vlado Semiga ◽  
Sanjay Tiku ◽  
Aaron Dinovitzer ◽  
Joe Zhou ◽  
Millan Sen

While the formation of a wrinkle in an onshore pipeline is an undesirable event, in many instances this event does not have immediate pipeline integrity implications. The magnitude or severity of a wrinkle formed due to displacement controlled loading processes (e.g. slope movement, fault displacement, frost heave and thaw settlement) may increase with time, eventually causing serviceability concerns (e.g. fluid flow or inspection restrictions). Pipe wall cracking and eventually a loss of containment involves contributions from the wrinkle formation process, as well as wrinkle deformations caused by in-service line pressure, temperature and seasonal soil displacements. The objective of this paper is to provide an overview of the ongoing research efforts, sponsored by TransCanada PipeLines Ltd, towards the development of a mechanics based wrinkle ultimate limit state that may be used in future to evaluate the long term integrity of wrinkled pipeline segments. The research efforts include testing and non-linear finite element modeling of a full scale wrinkled pipeline segment. This paper outlines the development of the full scale finite element model, including the detailed material model development, used to estimate the fatigue life of the experimental full scale fatigue test specimen. A comparison is then carried out between the experimental results and the results from the finite element analysis.


2012 ◽  
Vol 268-270 ◽  
pp. 737-740
Author(s):  
Yang Yu ◽  
Yi Hua Dou ◽  
Fu Xiang Zhang ◽  
Xiang Tong Yang

It is necessary to know the connecting and sealing ability of premium connection for appropriate choices of different working conditions. By finite element method, the finite element model of premium connection is established and the stresses of seal section, shoulder zone and thread surface of tubing by axial tensile loads are analyzed. The results show that shoulder zone is subject to most axial stresses at made-up state, which will make distribution of stresses on thread reasonable. With the increase of axial tensile loads, stresses of thread on both ends increase and on seal section and shoulder zone slightly change. The maximum stress on some thread exceed the yield limit of material when axial tensile loads exceed 400KN. Limited axial tensile loads sharply influence the contact pressures on shoulder zone while slightly on seal section. Although the maximum contact pressure on shoulder zone drop to 0 when the axial tensile load is 600KN, the maximum contact pressure on seal section will keep on a high level.


2021 ◽  
Author(s):  
Anthony Muff ◽  
Anders Wormsen ◽  
Torfinn Hørte ◽  
Arne Fjeldstad ◽  
Per Osen ◽  
...  

Abstract Guidance for determining a S-N based fatigue capacity (safe life design) for preloaded connectors is included in Section 5.4 of the 2019 edition of DNVGL-RP-C203 (C203-2019). This section includes guidance on the finite element model representation, finite element based fatigue analysis and determination of the connector design fatigue capacity by use of one of the following methods: Method 1 by FEA based fatigue analysis, Method 2 by FEA based fatigue analysis and experimental testing and Method 3 by full-scale connector fatigue testing. The FEA based fatigue analysis makes use of Appendix D.2 in C203-2019 (“S-N curves for high strength steel applications for subsea”). Practical use of Section 5.4 is illustrated with a case study of a fatigue tested wellhead profile connector segment test. Further developments of Section 5.4 of C203-2019 are proposed. This included acceptance criteria for use of a segment test to validate the FEA based fatigue analysis of a full-scale preloaded connector.


2009 ◽  
Author(s):  
F. Scott Gayzik ◽  
Craig A. Hamilton ◽  
Josh C. Tan ◽  
Craig McNally ◽  
Stefan M. Duma ◽  
...  

2007 ◽  
Vol 18-19 ◽  
pp. 253-261
Author(s):  
John A. Akpobi ◽  
C.O. Edobor

In this paper, a finite elment-eigenvalue method is formulated to solve the finite element models of time dependent temperature field problems in non-homogeneous materials such as functionally graded materials (FGMs). The method formulates an eigenvalue problem from the original finite element model and proceeds to calculate the associated eigenvectors from which the solution can be obtained. The results obtained highly accurate and are exponential functions of time which when compared with the exact solution tended fast to the steady state solution.


Sign in / Sign up

Export Citation Format

Share Document