Mesenchymal Stem Cell Injection After Myocardial Infarction Improves Myocardial Compliance

Author(s):  
Dennis Discher ◽  
Adam Engler

Cellular therapy for myocardial injury has improved ventricular function in both animal and clinical studies, though the mechanism of benefit is unclear. This study was undertaken to examine the effects of cellular injection after infarction on myocardial elasticity. Coronary artery ligation of Lewis rats was followed by direct injection of human mesenchymal stem cells (MSC) into the acutely ischemic myocardium. Two weeks post-infarct, myocardial elasticity was mapped by atomic force microscopy. MSC-injected hearts near the infarct region were two-fold stiffer than myocardium from non-infarcted animals but softer than myocardium from vehicle-treated infarcted animals. After eight weeks, the following variables were evaluated: MSC engraftment and left ventricular geometry by histologic methods; cardiac function with a pressure-volume conductance catheter; myocardial fibrosis by Masson trichrome staining; vascularity by immunohistochemistry; and apoptosis by TUNEL assay. The human cells engrafted and expressed a cardiomyocyte protein but stopped short of full differentiation and did not stimulate significant angiogenesis. MSC-injected hearts showed significantly less fibrosis than controls, as well as less left ventricular dilation, reduced apoptosis, increased myocardial thickness, and preservation of systolic and diastolic cardiac function. In summary, MSC injection after myocardial infarction did not regenerate contracting cardiomyocytes but reduced the stiffness of the subsequent scar and attenuated post-infarction remodeling, preserving some cardiac function. Improving scarred heart muscle compliance could be a functional benefit of cellular cardiomyoplasty.

2006 ◽  
Vol 290 (6) ◽  
pp. H2196-H2203 ◽  
Author(s):  
Mark F. Berry ◽  
Adam J. Engler ◽  
Y. Joseph Woo ◽  
Timothy J. Pirolli ◽  
Lawrence T. Bish ◽  
...  

Cellular therapy for myocardial injury has improved ventricular function in both animal and clinical studies, though the mechanism of benefit is unclear. This study was undertaken to examine the effects of cellular injection after infarction on myocardial elasticity. Coronary artery ligation of Lewis rats was followed by direct injection of human mesenchymal stem cells (MSCs) into the acutely ischemic myocardium. Two weeks postinfarct, myocardial elasticity was mapped by atomic force microscopy. MSC-injected hearts near the infarct region were twofold stiffer than myocardium from noninfarcted animals but softer than myocardium from vehicle-treated infarcted animals. After 8 wk, the following variables were evaluated: MSC engraftment and left ventricular geometry by histological methods, cardiac function with a pressure-volume conductance catheter, myocardial fibrosis by Masson Trichrome staining, vascularity by immunohistochemistry, and apoptosis by TdT-mediated dUTP nick-end labeling assay. The human cells engrafted and expressed a cardiomyocyte protein but stopped short of full differentiation and did not stimulate significant angiogenesis. MSC-injected hearts showed significantly less fibrosis than controls, as well as less left ventricular dilation, reduced apoptosis, increased myocardial thickness, and preservation of systolic and diastolic cardiac function. In summary, MSC injection after myocardial infarction did not regenerate contracting cardiomyocytes but reduced the stiffness of the subsequent scar and attenuated postinfarction remodeling, preserving some cardiac function. Improving scarred heart muscle compliance could be a functional benefit of cellular cardiomyoplasty.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Adolfo G Mauro ◽  
Donatas Kraskauskas ◽  
Bassem M Mohammed ◽  
Bernard J Fisher ◽  
Eleonora Mezzaroma ◽  
...  

Introduction: L-gulonolactone oxidase (Gulo) is the rate limiting enzyme for Vitamin C (VitC) biosynthesis. Humans rely on dietary VitC for collagen synthesis, extracellular matrix formation, and tissue regeneration. VitC deficiency is an unrecognized condition and its role in cardiac homeostasis and post-acute myocardial infarction (AMI) remodeling is unknown. Hypothesis: Low levels of VitC impair cardiac function and tissue repair following AMI. Methods: Adult male Gulo -/- knockout mice (C57BL6 background, N=8) and control C57BL (N=8), which are able to synthesize VitC were used. VitC deficiency was maintained supplying low levels of VitC (30mg/l) to Gulo -/- mice in drinking water. Mice underwent M-mode and Doppler echocardiography to measure left ventricular (LV) diameters and wall thicknesses, fractional shortening (FS), E and A waves, E/A ratio, isovolumetric relaxation time (IRT) and myocardial performance index (MPI). Experimental AMI was induced by coronary artery ligation for 7 days. An additional group of Gulo -/- were mice supplemented with physiological levels of VitC (330 mg/l) and underwent AMI. Results: VitC deficient Gulo -/- mice exhibited significantly reduced LV wall thicknesses, reduced FS, and impaired diastolic function, measured as significantly reduced E/A ratio and longer IRT (Panel A, B & C). Following AMI, 100% (8/8) of deficient Gulo -/- mice died within 5 days. Supplementation with physiological levels of VitC significantly improved survival after AMI (Panel D). Conclusion: VitC deficiency impairs systolic and diastolic function. Moreover, VitC is critical for the post-AMI survival.


1989 ◽  
Vol 66 (2) ◽  
pp. 712-719 ◽  
Author(s):  
T. I. Musch ◽  
R. L. Moore ◽  
P. G. Smaldone ◽  
M. Riedy ◽  
R. Zelis

The hemodynamic response to maximal exercise was determined in sedentary and trained rats with a chronic myocardial infarction (MI) produced by coronary artery ligation and in rats that underwent sham operations (SHAM). Infarct size in the MI groups of rats comprised 28–29% of the total left ventricle and resulted in both metabolic and hemodynamic changes that suggested that these animals had moderate compensated heart failure. The training regimen used in the present study produced significant increases in maximal O2 uptake (VO2max) when expressed in absolute terms (ml/min) or when normalized for body weight (ml.min-1.kg-1) and consisted of treadmill running at work loads that were equivalent to 70–80% of the animal's VO2max for a period of 60 min/day, 5 days/wk over an 8- to 10-wk interval. This training paradigm produced two major cardiocirculatory adaptations in the MI rat that had not been elicited previously when using a training paradigm of a lower intensity. First, the decrement in the maximal heart rate response to exercise (known as “chronotropic incompetence”) found in the sedentary MI rat was completely reversed by endurance training. Second, the downregulation of cardiac myosin isozyme composition from the fast ATPase V1 isoform toward the slower ATPase (V2 and V3) isoforms in the MI rat was partially reversed by endurance training. These cardiac adaptations occurred without a significant increase in left ventricular pump function as an increase in maximal cardiac output (Qmax) and maximal stroke volume (SVmax) did not occur in the trained MI rat.(ABSTRACT TRUNCATED AT 250 WORDS)


2003 ◽  
Vol 26 (4) ◽  
pp. 351-357 ◽  
Author(s):  
W.G. Kim ◽  
Y.C. Shin ◽  
S.W. Hwang ◽  
C. Lee ◽  
C.Y. Na

We report a comparison of the effects of myocardial infarction in dogs and sheep using sequential ligation of the left anterior descending artery (LAD) and its diagonal branch (DA), with hemodynamic, ultrasonographic and pathological evaluations. Five animals were used in each group. After surgical preparation, the LAD was ligated at a point approximately 40% of the distance from the apex to the base of the heart, and after one hour, the DA was ligated at the same level. Hemodynamic and ultrasonographic measurements were performed preligation, 30 minutes after LAD ligation, and 1 hour after DA ligation. As a control, two animals in each group were used for the simultaneous ligation of the LAD and the DA. Two months after the coronary ligation, the animals were evaluated as previously, and killed for postmortem examination of their hearts. All seven animals in the dog group survived the experimental procedures, while in the sheep group only animals with sequential ligation of the LAD and DA survived. Statistically significant decreases in systemic arterial blood pressure and cardiac output, and an increase in the pulmonary artery capillary wedge pressure (PACWP) were observed one hour after sequential ligation of the LAD and its DA in the sheep, while only systemic arterial pressures decreased in the dog. Ultrasonographic analyses demonstrated variable degrees of anteroseptal dyskinesia and akinesia in all sheep, but in no dogs. Data two months after coronary artery ligation showed significant increases in central venous pressure, pulmonary artery pressure, and PACWP in the sheep, but not in the dog. Left ventricular end-diastolic dimension and left ventricular end-systolic dimension in ultrasonographic studies were also increased only in the sheep. Pathologically, the well-demarcated thin-walled transmural anteroseptal infarcts with chamber enlargement were clearly seen in all specimens of sheep, and only-mild-to-moderate chamber enlargements with endocardial fibrosis were observed in the dog hearts. In conclusion, this study confirms that the dog is not a suitable model for myocardial infarction with failure by coronary artery ligation despite negligent operative mortality, when compared directly with an ovine model.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Andreas Boening ◽  
Maximilian Hinke ◽  
Martina Heep ◽  
Kerstin Boengler ◽  
Bernd Niemann ◽  
...  

Abstract Background Because hearts in acute myocardial infarction are often prone to ischemia-reperfusion damage during cardiac surgery, we investigated the influence of intracellular crystalloid cardioplegia solution (CCP) and extracellular blood cardioplegia solution (BCP) on cardiac function, metabolism, and infarct size in a rat heart model of myocardial infarction. Methods Following euthanasia, the hearts of 50 rats were quickly excised, cannulated, and inserted into a blood-perfused isolated heart apparatus. A regional myocardial infarction was created in the infarction group (18 hearts) for 120 min; the control group (32 hearts) was not subjected to infarction. In each group, either Buckberg BCP or Bretschneider CCP was administered for an aortic clamping time of 90 min. Functional parameters were recorded during reperfusion: coronary blood flow, left ventricular developed pressure (LVDP) and contractility (dp/dt max). Infarct size was determined by planimetry. The results were compared between the groups using analysis of variance or parametric tests, as appropriate. Results Cardiac function after acute myocardial infarction, 90 min of cardioplegic arrest, and 90 min of reperfusion was better preserved with Buckberg BCP than with Bretschneider CCP relative to baseline (BL) values (LVDP 54 ± 11% vs. 9 ± 2.9% [p = 0.0062]; dp/dt max. 73 ± 11% vs. 23 ± 2.7% [p = 0.0001]), whereas coronary flow was similarly impaired (BCP 55 ± 15%, CCP 63 ± 17% [p = 0.99]). The infarct in BCP-treated hearts was smaller (25% of myocardium) and limited to the area of coronary artery ligation, whereas in CCP hearts the infarct was larger (48% of myocardium; p = 0.029) and myocardial necrosis was distributed unevenly to the left ventricular wall. Conclusions In a rat model of acute myocardial infarction followed by cardioplegic arrest, application of BCP leads to better myocardial recovery than CCP.


Nanoscale ◽  
2020 ◽  
Vol 12 (42) ◽  
pp. 21599-21604
Author(s):  
Yi Li ◽  
Hong Yu ◽  
Liang Zhao ◽  
Yuting Zhu ◽  
Rui Bai ◽  
...  

Caspase3 gene silencing based on the gene transfer carrier F-CNT-siCas3 had obvious protective effects on myocardial cell apoptosis, ventricular remodeling, and cardiac function in Sprague-Dawley (SD) rats after coronary artery ligation.


2001 ◽  
Vol 281 (5) ◽  
pp. R1734-R1745 ◽  
Author(s):  
J. Francis ◽  
R. M. Weiss ◽  
S. G. Wei ◽  
A. K. Johnson ◽  
R. B. Felder

This study examined the early neurohumoral events in the progression of congestive heart failure (CHF) after myocardial infarction (MI) in rats. Immediately after MI was induced by coronary artery ligation, rats had severely depressed left ventricular systolic function and increased left ventricular end-diastolic volume (LVEDV). Both left ventricular function and the neurohumoral indicators of CHF underwent dynamic changes over the next 6 wk. LVEDV increased continuously over the study interval, whereas left ventricular stroke volume increased but reached a plateau at 4 wk. Plasma renin activity (PRA), arginine vasopressin, and atrial natriuretic factor all increased, but with differing time courses. PRA declined to a lower steady-state level by 4 wk. Six to 8 wk after MI, CHF rats had enhanced renal sympathetic nerve activity and blunted baroreflex regulation. These findings demonstrate that the early course of heart failure is characterized not by a simple “switching on” of neurohumoral drive, but rather by dynamic fluctuations in neurohumoral regulation that are linked to the process of left ventricular remodeling.


2003 ◽  
Vol 81 (7) ◽  
pp. 740-746 ◽  
Author(s):  
Marie-Josée Dumoulin ◽  
Albert Adam ◽  
Jean-Lucien Rouleau ◽  
Hugues Gosselin ◽  
Daniel Lamontagne

The aim of the present study was to assess the contribution of angiotensin I converting enzyme (ACE) and neutral endopeptidase (NEP) in the coronary degradation of bradykinin (BK) after left-ventricular hypertrophy following myocardial infarction (MI) in rats. Myocardial infarction was induced by left descendant coronary artery ligation, and the contribution of ACE and NEP in the degradation of exogenous BK after a single passage through the coronary bed was assessed at 2, 5, and 36 days post-MI. BK degradation rate (Vmax/Km) was found to be significantly lower in hearts at 36 days (3.30 ± 0.28 min–1) compared with 2 days (4.39 ± 0.32 min–1) for noninfarcted hearts, but this reduction was just above the statistical level of significance for post-MI hearts. In infarcted hearts, Vmax/Km was increased significantly 5 days post-MI (4.91 ± 0.28 min–1) compared with the 2 and 36 day-groups (3.43 ± 0.20 and 2.78 ± 0.16 min–1, respectively). The difference between noninfarcted and MI was significant only 2 days post-MI. Treatment with the vasopeptidase inhibitor, omapatrilat, showed that the relative contribution of ACE and NEP combined increased over time in infarcted hearts and became significantly higher 36 versus 2 days post-MI. Finally, the treatment with an ACE inhibitor (enalaprilat) and a NEP inhibitor (retrothiorphan) in the 36-day infarcted and noninfarcted hearts showed that the relative contribution of ACE in infarcted hearts was comparable with that of noninfarcted hearts, whereas the relative contribution of NEP was increased significantly in infarcted hearts. In conclusion, experimental MI in rats induces complex changes in the metabolism of exogenous BK. The changes resulted in an increased relative contribution of NEP 36 days after infarction.Key words: bradykinin, ACE, NEP, myocardial infarction.


2003 ◽  
Vol 284 (3) ◽  
pp. H903-H910 ◽  
Author(s):  
William P. Magee ◽  
Gayatri Deshmukh ◽  
Michael P. Deninno ◽  
Jill C. Sutt ◽  
Justin G. Chapman ◽  
...  

KB-R7943 and SEA0400 are Na+/Ca2+ exchanger (NCX) inhibitors with differing potency and selectivity. The cardioprotective efficacy of these NCX inhibitors was examined in isolated rabbit hearts (Langendorff perfused) subjected to regional ischemia (coronary artery ligation) and reperfusion. KB-R7943 and SEA0400 elicited concentration-dependent reductions in infarct size (SEA0400 EC50: 5.7 nM). SEA0400 was more efficacious than KB-R7943 (reduction in infarct size at 1 μM: SEA0400, 75%; KB-R7943, 40%). Treatment with either inhibitor yielded similar reductions in infarct size whether administered before or after regional ischemia. SEA0400 (1 μM) improved postischemic recovery of function (±dP/d t), whereas KB-R7943 impaired cardiac function at ≥1 μM. At 5–20 μM, KBR-7943 elicited rapid and profound depressions of heart rate, left ventricular developed pressure, and ±dP/d t. Thus the ability of KB-R7943 to provide cardioprotection is modest and limited by negative effects on cardiac function, whereas the more selective NCX inhibitor SEA0400 elicits marked reductions in myocardial ischemic injury and improved ±dP/d t. NCX inhibition represents an attractive approach for achieving clinical cardioprotection.


Sign in / Sign up

Export Citation Format

Share Document