EWOD Based Liquid-Liquid Extraction and Separation

Author(s):  
Praveen Kunchala ◽  
Hyejin Moon ◽  
Yasith Nanayakkara ◽  
Daniel W. Armstrong

Liquid-liquid extraction techniques are one of the major tools in chemical engineering, analytical chemistry, and biology, especially in a system where two immiscible liquids have an interface solutes exchange between the two liquid phases along the interface up to a point where the concentration ratios in the two liquids reach their equilibrium values [1]. Solutes including nucleic acids and proteins of interests can be extracted from one liquid phase to the other immiscible liquid phase as a preparation step for many analytical processes. There are several advantages in miniaturizing the liquid-liquid extraction methods to on-chip level extraction. Usual advantages of miniaturization are the reduction in the sample size and portability. In addition, transport phenomena is faster in Micro-systems than in ordinary size systems, and therefore, one may expect that liquid-liquid extraction takes less time to achieve in miniaturized devices. It is due to shorter diffusion time in micro scale as well as high surface to volume ratio of Microsystems. Electrowetting on dielectric (EWOD) digital microfluidics is an efficient platform to process droplet based analytical processes [2]. Nanoliter (nL) or smaller volume of aqueous liquid droplets can be generated and transported on a chip by EWOD process. In addition to the high surface to volume ratio, high chemical potential can be expected in droplet based extraction when the droplets are in motion. In this paper, we propose to use room temperature ionic liquid (RTIL) as a second liquid phase for extraction, which forms immiscible interface with aqueous solutions. Properties of RTIL can be tailored by choice of cation, anion and substituents. RTIL has been investigated as replacements for the organic solvents and various “task-specific” ionic liquid are being developed which exhibit many attractive properties such as very low vapor pressure, high thermal stability [3]. We recently published EWOD properties of various RTILs toward microfluidic applications [4]. To demonstrate liquid-liquid micro extraction on chip, we fabricated and tested EWOD digital microfluidic devices. Fig. 1 shows (a) top and (b) cross sectional views of EWOD device. Two model extraction systems were tested. One is organic dye extracted from RTIL (1-butyl-3-methylimidazolium bis(trifluoromethanesulfonylimide or BMIMNTf2) to water and the other is iodine (I2) extracted from water to BMIMNTf2. The later model experiment is demonstrated in Fig. 2. Droplets of aqueous solution and BMIMNTf2 solution were generated on chip reservoir then transported for extraction and separated by EWOD actuation. When an aqueous solution and BMIMNTf2 solution join together, they created an interface, since water and BMIMNTf2 are immiscible. Extraction of I2 was done along the interface. After successful extraction, two immiscible liquid phases were separated by EWOD actuation and formed two separate droplets. From the result shown in Fig 2 (g), it is expected that extraction performance at the interface of moving droplet would be enhanced compared to the stationary droplet, because a moving interface prevent the chemical equilibrium, thus more chemical extraction potential can be provided with a moving interface than at a stationary interface. This demonstration is the first step toward total analysis system. The presented result opens the way to on-chip micro extraction, which will be readily integrated with other sample preparation microfluidic components and detection components. Currently, micro extraction systems for larger molecules such as nucleic acids, proteins and biological cells are being developed for further analytical applications.

2017 ◽  
Vol 7 (4) ◽  
pp. 44 ◽  
Author(s):  
Takeshi Kato ◽  
Shotaro Saito ◽  
Shigekatsu Oshite ◽  
Shukuro Igarashi

A powerful technique for the concentration of rhodium (Rh) in plating wastewater was developed. The technique entails complexing Rh with 1-(2-pyridylazo)-2-naphthol (PAN) followed by homogeneous liquid–liquid extraction (HoLLE) with Zonyl FSA. The optimum HoLLE conditions were determined as follows: [ethanol]T = 30.0 vol.%, pH = 4.00, and Rh:PAN = 1:5. Under these optimum conditions, 88.1% of Rh was extracted into the sedimented liquid phase. After phase separation, the volume ratio [aqueous phase (Va) /sedimented liquid phase (Vs)] of Va and Vs was 1000 (50 mL → 0.050 mL). We then applied the new method to wastewater generated by the plating industry. The phase separation was satisfactorily achieved when the volume was scaled up to 1000 mL of the actual wastewater; 84.7% of Rh was extracted into the sedimented liquid phase. After phase separation, Va/Vs was 588 (1000 mL - 1.70 mL).


Author(s):  
Hyejin Moon ◽  
Praveen Kunchala ◽  
Yasith Nanayakkara ◽  
Daniel W. Armstrong

Liquid-liquid extraction techniques are one of the major tools in chemical engineering, analytical chemistry, and biology, especially in a system where two immiscible liquids have an interface solutes exchange between the two liquid phases along the interface up to a point where the concentration ratios in the two liquids reach their equilibrium values [1]. In this paper, we propose to use room temperature ionic liquid (RTIL) as a second liquid phase for extraction, which forms immiscible interface with aqueous solutions. We demonstrate liquid-liquid extraction with the EWOD digital microfluidic device, two model extraction systems were tested. One is organic dye extracted from RTIL(1-butyl-3-methylimidazolium bis(trifluoromethanesulfonylimide or BMIMNTf2) to water and the other is iodine (I2) extracted from water to BMIMNTf2. Droplets of aqueous solution and BMIMNTf2 solution were generated on chip reservoir then transported for extraction and separated by EWOD actuation successfully.


2014 ◽  
Vol 68 (2) ◽  
pp. 161-170 ◽  
Author(s):  
Vesna Novkovic ◽  
Ljiljana Stanojevic ◽  
Milorad Cakic ◽  
Vlada Veljkovic ◽  
Mihajlo Stankovic

The present study deals with the extraction of digoxin (Dgx) from chloroform and trichloroethylene extracts of the secondary glycosides of fermented foxglove (Digitalis lanata Ehrh.) foliage by liquid-liquid extraction. The extraction degree (ED) of Dgx achieved by maceration and percolation using 10% vol. aqueous ethanol solutions were higher than 95%. Using trichlorethylene and chloroform, the ED of Dgx of about 100% and 96%, respectively from the liquid ethanolic extracts (macerate or percolate) were achieved by the four-cycle extraction. Fifteen separating funnels were employed for the liquid-liquid extraction. Three different four-component two-phase systems (ethanol:water - chloroform:ethyl acetate, ethanol:water - chloroform:trichloroethylene and ethanol:water - trichloroethylene:ethyl acetate) were tested as an extracting solvent to get the final product having more than 98% of Dgx. The initial amount of the chloroform or trichloroethylene extract in the light phase was varied between 5 and 25 g/L, while the volume ratio of light and heavy phases was in the range of 1:1 to 1:2. The best Dgx yield of 98% was achieved with the system ethanol:water - chloroform:trichloroethylene 35:15:20:30 at the volume ratio of the phases of 1:1.1 and at the initial amount of the extract of 15 g/L. Purity of the separated digoxin was 99.8 %.


2019 ◽  
Vol 11 (31) ◽  
pp. 28327-28335 ◽  
Author(s):  
Prashant Agrawal ◽  
Timothy T. Salomons ◽  
Dragos S. Chiriac ◽  
Avena Clara Ross ◽  
Richard David Oleschuk

2008 ◽  
Vol 368-372 ◽  
pp. 461-464
Author(s):  
Yong Ping Pu ◽  
Gong An Yang ◽  
Yun He Liang ◽  
Wen Hu Yang ◽  
Jin Fei Wang

The influence of liquid phase on grain growth of Ba0.998La0.002TiO3+xmol%TiO2 (x=0~5.0) ceramics sintered at 1350°C was investigated. The result showed that the liquid phase must present during grain growth; on the other hand, BaTiO3 grains must be dissolved, and then, precipitated from the liquid phase during the process of dissolution-precipitation. Otherwise, the grain growth was inhibited. The liquid phases of Ba6Ti17O4 and Ba2TiSi2O8 promoted grain growth due to high solution of BaTiO3 grains in the liquid phases. Ba2Ti2SiP2O13 liquid phase inhibited grain growth since BaTiO3 grains cannot dissolve into the phase, consequently the samples showed insulating behaviour.


2014 ◽  
Vol 43 (8) ◽  
pp. 3186-3195 ◽  
Author(s):  
Alok Rout ◽  
Koen Binnemans

Rare earths can be extracted from molten calcium nitrate tetrahydrate to the ionic liquid tricaprylmethylammonium nitrate at very high loading concentrations.


2013 ◽  
Vol 85 (15) ◽  
pp. 7558-7565 ◽  
Author(s):  
Philip Wägli ◽  
Yu-Chi Chang ◽  
Alexandra Homsy ◽  
Lubos Hvozdara ◽  
Hans Peter Herzig ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document