Effect of ST2, a Fragment of ADAMTS13, on Cleavage of Von Willebrand Factor

Author(s):  
Jin-Yu Shao ◽  
Yingchen Ling ◽  
J. Evan Sadler ◽  
Elaine M. Majerus

Von Willebrand Factor (VWF) is a multimeric plasma glycoprotein that mediates platelet adhesion and aggregation, a process critical for both hemostasis and thrombosis. Under normal conditions, VWF binds to platelets at sites of vascular injury or damage, leading to blood clot formation and wound healing. VWF contains four types of repeating domains in the following sequence: D1-D2-D’-D3-A1-A2-A3-D4-B1-B2-B3-C1-C2-CK (CK: cystine knot). It is synthesized and secreted into plasma by endothelial cells and megakaryocytes. Many newly-secreted VWF multimers are huge in size, thus they are termed ultra-large VWF (ULVWF). ULVWF is thrombogenic, so it is reduced to smaller VWF multimers by ADAMTS13, a metalloprotease that cleaves the Tyr1605-Met1606 bond in the A2 domain of VWF. Proper ULVWF cleavage and subsequent VWF cleavage result in appropriate size distribution of VWF in plasma, which is required for its hemostatic function. On the one hand, insufficient cleavage of ULVWF leads to thrombotic thrombocytopenic purpura (TTP), a disease characterized by microvascular thrombosis; on the other hand, excessive cleavage of VWF leads to Von Willebrand disease (VWD), a potentially-fatal bleeding disorder manifested by lack of large VWF multimers in plasma [1]. Therefore, understanding VWF cleavage by ADAMTS13 is crucial for understanding VWF function and its related diseases.

1992 ◽  
Vol 68 (04) ◽  
pp. 464-469 ◽  
Author(s):  
Y Fujimura ◽  
S Miyata ◽  
S Nishida ◽  
S Miura ◽  
M Kaneda ◽  
...  

SummaryWe have recently shown the existence of two distinct forms of botrocetin (one-chain and two-chain), and demonstrated that the two-chain species is approximately 30 times more active than the one-chain in promoting von Willebrand factor (vWF) binding to platelet glycoprotein (GP) Ib. The N-terminal sequence of two-chain botrocetin is highly homologous to sea-urchin Echinoidin and other Ca2+-dependent lectins (Fujimura et al., Biochemistry 1991; 30: 1957–64).Present data indicate that purified two-chain botrocetin binds to vWF from plasmas of patients with type IIA or IIB von Willebrand disease and its interaction is indistinguishable from that with vWF from normal individuals. However, an “activated complex” formed between botrocetin and IIB vWF expresses an enhanced biological activity for binding to GP Ib whereas the complex with IIA vWF has a decreased binding activity. Among several anti-vWF monoclonal antibodies (MoAbs) which inhibit ristocetin-induced platelet aggregation and/or vWF binding to GPIb, only two MoAbs (NMC-4 and RFF-VIII RAG:1) abolished direct binding between purified botrocetin and vWF. This suggests that they recognize an epitope(s) on the vWF molecule in close proximity to the botrocetin binding site.


2007 ◽  
Vol 97 (04) ◽  
pp. 527-533 ◽  
Author(s):  
Luigi Marco ◽  
Lisa Gallinaro ◽  
Maryta Sztukowska ◽  
Mario Mazzuccato ◽  
Monica Battiston ◽  
...  

SummaryThe normal von Willebrand factor (vWF) multimer pattern results from the ADAMTS-13 cleavage of the Tyr1605-Met1606 bond in the A2 domain of vWF. We identified a patient with severe von Willebrand disease (vWD) homozygously carrying a Cys to Phe mutation in position 2362 of vWF with markedly altered vWF multimers and an abnormal proteolytic pattern. The proband’s phenotype was characterized by a marked drop in plasma vWF antigen and ristocetin cofactor activity, and a less pronounced decrease in FVIII. The vWF multimers lacked any triplet structure, replaced by single bands with an atypical mobility, surrounded by a smear, and abnormally large vWF multimers. Analysis of the plasma vWF subunit's composition revealed the 225 kDa mature form and a single 205 kDa fragment, but not the 176 kDa and 140 kDa fragments resulting from cleavage by ADAMTS-13.The 205 kDa fragment was distinctly visible, along with the normal vWF cleavage products, in the patient's parents who were heterozygous for the Cys2362Phe mutation. Their vWF levels were mildly decreased and vWF multimers were organized in triplets, but also demonstrated abnormally large forms and smearing. Our findings indicate that a proper conformation of the B2 domain, which depends on critical Cys residues, may be required for the normal proteolytic processing of vWF multimers.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3939-3939
Author(s):  
Jian Su ◽  
Xia Bai ◽  
Ziqiang Yu ◽  
Zhaoyue Wang ◽  
Changgeng Ruan

Abstract The multimer distribution of Von Willebrand factor (VWF) in plasma is regulated by the specific VWF cleaving protease ADAMTS13, which cleaves at the Y1605-M1606 bond in the A2 domain of VWF under the shear stress, plays paramount roles in mediating platelet adhesion to the subendothelium during vascular damage. Quantitative deficiency or qualitative abnormity in VWF caused by the mutations in the VWF gene leads to von Willebrand disease (vWD). There exist three types of vWD. Type 1 vWD is characterized by the partial quantitative deficiency of VWF and normal multimers. Type 3 refers to complete deficiency of VWF. Type 2 vWD refers to the qualitative deficiency of VWF and is subdivided into types of 2A, 2B, 2M, 2N. Meanwhile, the subtype of 2A vWD is also subdivided into two groups regarding ADAMTS13-dependent proteolysis of VWF. Group I includes the mutations G1505R, S1506L, L1540P, V1607D, which hinder the multimer assembly and diminish the secretion of VWF while group II includes R1597W, R1597Q, G1505E, I1628T, E1628K, which make VWF more susceptible to ADAMTS13 -dependent proteolysis. All these published point mutations cluster in the A2 domain of VWF and the corresponding mutation mechanism upon VWF has been elucidated. We have identified a patient with bleeding symptoms and reduced plasma VWF antigen, factor VIII and ristocetin cofactor activity, compatible with clinical von Willebrand disease. Analysis of proband’s plasma VWF multimers in low resolution agarose gels demonstrated similar results compared to the healthy. The patient carried a heterozygous deletion mutation from position 1648 to 1650 resulting in loss of three consecutive amino acids (ProIleLeu) in the pre-pro-VWF. It has been demonstrated that the minimal substrate for ADAMTS13 is intact VWF73, a region from Asp1596 to Arg1668 of von Willebrand factor. The novel deletion mutation in this patient occurred in the intact VWF73 and its mutated effect upon cleavage by ADAMTS13 could be clarified by further experiments such as in vitro recombinant expression of mutated VWF and might strengthen our understanding of the interaction between VWF and ADAMTS13.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 236-236
Author(s):  
Qi Da ◽  
Jennifer Nolasco ◽  
Tanvir Khatlani ◽  
Fernandez Maria ◽  
Miguel A. Cruz ◽  
...  

Abstract Protein phosphorylation represents a common mechanism to regulate the structure and function of proteins. Although vast amount of extracellular proteins including secreted plasma proteins are phosphorylated, historically, phosphorylation has been intensively investigated for intracellular proteins. The plasma and subendothelial protein von Willebrand factor (VWF) undergoes post translational modifications such as glycosylation and sulphation to reach the mature protein product. However, phosphorylation of VWF has not been described. We have used mass spectrometry to analyze purified plasma VWF, and identified that serine 1613 within the A2 domain was phosphorylated. A natural occurring mutation on this residue (S1613P) causes von Willebrand disease Type 2A by increasing the susceptibility of VWF to be cleaved by ADAMTS13. Notably, S1613 overlapped with the S-X-E/pS motif, which is the consensus site for phosphorylation by an atypical kinase, FAM20c (family with sequence similarity 20, member C). Localized to the inner lumen of the golgi/endoplasmic reticulum, FAM20c is secreted and likely responsible for the phosphorylation of several secreted proteins bearing the S-X-E/ps motif. Therefore, we further investigated whether VWF can undergo phosphorylation by FAM20c and how such modification impacts the function of VWF, particularly on the activity of ADAMTS13. In vitro, recombinant FAM20c directly phosphorylated recombinant VWF-A1A2A3 domain protein and purified plasma VWF. Further analysis revealed that the isolated A2 domain but not A1 or A3 domain was phosphorylated by FAM20c. Phosphorylation was assessed employing 32P labeling of proteins, protein shift in phospho tag gel and mass spectrometry. Treatment with λ phosphatase diminished phosphorylation and a defective FAM20c kinase mutant failed to phosphorylate A2 and VWF proteins, confirming the phosphorylation event. In addition, FAM20c-mediated phosphorylation was markedly reduced in a non-phosphorylatable A2 S1613A mutant. Thus, all these outcomes indicate that the secreted kinase FAM20c can phosphorylate S1613 in the A2 domain of VWF. To explore the functional effect of S1613 phosphorylation, we compared the plasma-mediated cleavage of wild type (WT)A2, phosphomimetic S1613D mutant and the nonphosphorylatable A2 S1613A mutant. Unexpectedly, and in sharp contrast to the WT and S1613A variants, the S1613D mutant was effectively cleaved in the presence of the enzyme inhibitor, EDTA. In addition, cleavage of the S1613D mutant was robust and slightly faster than that of the WT and S1613A. These studies suggest that phosphorylation of S1613 in VWF may facilitate the cleavage of VWF multimers. To further explore the physiological relevance of phosphorylated VWF in thrombosis, we generated phospho VWF S1613 and nonphosphorylated S1613 VWF antibodies and studied their effect on thrombus formation. In a microfluidic perfusion system, whole blood supplemented with 50 μg/ml of phosphoVWF antibody but not the nonphosphoVWF antibody, markedly potentiated thrombus formation on a collagen-coated surface. Collectively, these studies suggest that S1613 phosphorylation of VWF suppress thrombus formation, in part by facilitating cleavage of the VWF multimers. These studies identify for the first time that VWF can undergo phosphorylation and opens new avenues for regulation of VWF function by phosphorylation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 107 (6) ◽  
pp. 2339-2345 ◽  
Author(s):  
Wolf Achim Hassenpflug ◽  
Ulrich Budde ◽  
Tobias Obser ◽  
Dorothea Angerhaus ◽  
Elke Drewke ◽  
...  

Abstract Classical von Willebrand disease (VWD) type 2A, the most common qualitative defect of VWD, is caused by loss of high-molecular-weight multimers (HMWMs) of von Willebrand factor (VWF). Underlying mutations cluster in the A2 domain of VWF around its cleavage site for ADAMTS13. We investigated the impact of mutations commonly found in patients with VWD type 2A on ADAMTS13-dependent proteolysis of VWF. We used recombinant human ADAMTS13 (rhuADAMTS13) to digest recombinant full-length VWF and a VWF fragment spanning the VWF A1 through A3 domains, harboring 13 different VWD type 2A mutations (C1272S, G1505E, G1505R, S1506L, M1528V, R1569del, R1597W, V1607D, G1609R, I1628T, G1629E, G1631D, and E1638K). With the exception of G1505E and I1628T, all mutations in the VWF A2 domain increased specific proteolysis of VWF independent of the expression level. Proteolytic susceptibility of mutant VWF in vitro closely correlated with the in vivo phenotype in patients. The results imply that increased VWF susceptibility for ADAMTS13 is a constitutive property of classical VWD type 2A, thus explaining the pronounced proteolytic fragments and loss of HMWM seen in multimer analysis in patients.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3666-3666
Author(s):  
Wolf A. Hassenpflug ◽  
Ulrich Budde ◽  
Tobias Obser ◽  
Dorothea Angerhaus ◽  
Elke Drewke ◽  
...  

Abstract Von Willebrand factor (VWF) plays an important role in primary hemostasis as it mediates platelet adhesion to the vessel wall and subsequent platelet aggregation at the site of vascular injury. Since the adhesive function of VWF depends on its multimer size, the loss of high molecular weight multimers (HMWM) results in hemorrhagic diathesis as seen in classical von Willebrand disease (VWD) type 2A, which represents the most common qualitative defect of VWD. The size distribution of VWF multimers in plasma is strongly influenced - if not regulated - by the specific VWF cleaving protease ADAMTS13 that cleaves VWF at the Y1605-M1606 bond in the A2 domain. Mutations in classical VWD type 2A cluster in the A2 domain and earlier studies suggest that some of the mutations make VWF more susceptible to ADAMTS13 dependent proteolysis (group 2) while others decrease the secretion of VWF HMWM (group 1). Our aim was to investigate the impact of VWF A2 domain mutations on ADAMTS13 dependent proteolysis of VWF. We used recombinant human ADAMTS13 (rhuADAMTS13) to digest recombinant full-length VWF and a fragment spanning the VWF A1-A2-A3 domains, harboring 13 different mutations that we found in patients with VWD type 2A. Proteolysis was monitored by VWF multimer analysis and by SDS-PAGE of the VWF A1-A2-A3 fragment. Cleavage of full-length VWF resulted in multimer patterns similar to that seen in plasma of patients with VWD type 2A, confirming the specifity of the reaction. Eleven VWF mutants (C1272S, G1505R, S1506L, M1528V, delR1569, R1597W, V1607D, G1609R, G1629E, G1631D, E1638K) showed less HMWM and more pronounced proteolytic fragments than wildtype (wt) VWF digested under the same conditions. Co-expression of the wt allele attenuated the proteolysis-permissive phenotype. The G1629E mutation resulted in highly increased proteolysis, suggesting an important role of this residue in the interaction between VWF and ADAMTS13. Surprisingly, G1505E and I1628T mutations failed to increase cleavage of the full-length VWF by rhuADAMTS13. However, when these mutations were introduced in the monomeric VWFA1-A2-A3 fragments they (like others) allowed cleavage of the Y1605-M1606 bond even under non-denaturing conditions, suggestive of an increased proteolytic susceptibility since wt VWF is only cleaved under denaturing conditions. The differences between the assays of full-length VWF and A1-A2-A3 domain fragment might be due to the lack of shear in our assay. This study provides direct evidence that in VWD type 2A, VWF with mutations in the A2 domain is subject to increased cleavage by ADAMTS13. This includes mutations previously designated as group 1 (G1505R, S1506L and V1607D) suggesting that increased susceptibility to ADAMTS13 is a more general property of VWF with A2 domain mutations. Therefore future therapies for patients with VWD type 2A might target VWF cleavage by ADAMTS13. RhuADAMTS13 and VWF constructs with mutations in the A2 domain are valuable tools to investigate VWF cleavage under varying conditions. Further work should address the question how shear influences ADAMTS13 dependent cleavage of VWF mutants.


Sign in / Sign up

Export Citation Format

Share Document