A Novel Combined Power and Cooling Thermodynamic Cycle for Low Temperature Heat Sources: Part II — Experimental Investigation

Solar Energy ◽  
2002 ◽  
Author(s):  
Gunmar Tamm ◽  
D. Yogi Goswami

A combined thermal power and cooling cycle proposed by Goswami is under intensive investigation, both theoretically and experimentally. The proposed cycle combines the Rankine and absorption refrigeration cycles, producing refrigeration while power is the primary goal. A binary ammonia-water mixture is used as the working fluid. This cycle can be used as a bottoming cycle using waste heat from a conventional power cycle or an independent cycle using low temperature sources such as geothermal and solar energy. An experimental system was constructed to demonstrate the feasibility of the cycle and to compare the experimental results with the theoretical simulation. Results showed that the vapor generation and absorption condensation processes work experimentally, exhibiting expected trends, but with deviations from ideal and equilibrium modeling. The potential for combined turbine work and refrigeration output was evidenced in operating the system. Analysis of losses showed where improvements could be made, in preparation for further testing over a broader range of operating parameters.

2003 ◽  
Vol 125 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Gunnar Tamm ◽  
D. Yogi Goswami

A combined thermal power and cooling cycle proposed by Goswami is under intensive investigation, both theoretically and experimentally. The proposed cycle combines the Rankine and absorption refrigeration cycles, producing refrigeration while power is the primary goal. A binary ammonia-water mixture is used as the working fluid. This cycle can be used as a bottoming cycle using waste heat from a conventional power cycle or as an independent cycle using low temperature sources such as geothermal and solar energy. An experimental system was constructed to demonstrate the feasibility of the cycle and to compare the experimental results with the theoretical simulation. Results showed that the vapor generation and absorption condensation processes work experimentally, exhibiting expected trends, but with deviations from ideal and equilibrium modeling. The potential for combined turbine work and refrigeration output was evidenced in operating the system. Analysis of losses showed where improvements could be made, in preparation for further testing over a broader range of operating conditions.


2003 ◽  
Vol 125 (2) ◽  
pp. 218-222 ◽  
Author(s):  
Gunnar Tamm ◽  
D. Yogi Goswami ◽  
Shaoguang Lu ◽  
Afif A. Hasan

A combined thermal power and cooling cycle proposed by Goswami is under intensive investigation, both theoretically and experimentally. The proposed cycle combines the Rankine and absorption refrigeration cycles, producing refrigeration while power is the primary goal. A binary ammonia-water mixture is used as the working fluid. This cycle can be used as a bottoming cycle using waste heat from a conventional power cycle or as an independent cycle using low temperature sources such as geothermal and solar energy. Initial parametric studies of the cycle showed the potential for the cycle to be optimized for first or second law efficiency, as well as work or cooling output. For a solar heat source, optimization of the second law efficiency is most appropriate, since the spent heat source fluid is recycled through the solar collectors. The optimization results verified that the cycle could be optimized. Theoretical results were extended to include realistic irreversibilities in the cycle, in preparation for the experimental study.


Solar Energy ◽  
2002 ◽  
Author(s):  
Gunmar Tamm ◽  
D. Yogi Goswami ◽  
Shaoguang Lu ◽  
Afif A. Hasan

A combined thermal power and cooling cycle proposed by Goswami is under intensive investigation, both theoretically and experimentally. The proposed cycle combines the Rankine and absorption refrigeration cycles, producing refrigeration while power is the primary goal. A binary ammonia-water mixture is used as the working fluid. This cycle can be used as a bottoming cycle using waste heat from a conventional power cycle or an independent cycle using low temperature sources such as geothermal and solar energy. Initial parametric studies of the cycle showed the potential for the cycle to be optimized for first or second law efficiency, as well as work or cooling output. For a solar heat source, optimization of the second law efficiency is most appropriate, since the spent heat source fluid is recycled through the solar collectors. The optimization results verified that the cycle could be optimized using the Generalized Reduced Gradient method. Theoretical results were extended to include realistic irreversibilities in the cycle, in preparation for the experimental study.


Author(s):  
D. Y. Goswami ◽  
Gunnar Tamm ◽  
Sanjay Vijayaraghavan

A new thermodynamic cycle has been developed for the simultaneous production of power and cooling from low temperature heat sources. The proposed cycle combines the Rankine and absorption refrigeration cycles, providing power and cooling in desired ratios to best suit the application. A binary mixture of ammonia and water is used as the working fluid, providing a good thermal match with the sensible heat source over a range of boiling temperatures. Due to its low boiling point, the ammonia-rich vapor expands to refrigeration temperatures while work is extracted through the turbine. Absorption condensation of the vapor back into the bulk solution occurs near ambient temperatures. The proposed cycle is suitable as a bottoming cycle using waste heat from conventional power generation systems, or can utilize low temperature solar or geothermal renewable resources. The cycle can be scaled to residential, commercial or industrial uses, providing power as the primary goal while satisfying some of the cooling requirements of the application. The cycle is under both theoretical and experimental investigations. Initial parametric studies of how the cycle performs at various operating conditions showed the potential for the cycle to be optimized. Optimization studies performed over a range of heat source and heat sink temperatures showed that the cycle could be optimized for maximum work or cooling output, or for first or second law efficiencies. Depending on the heat source temperatures, as much as half of the output may be obtained as refrigeration under optimized conditions, with refrigeration temperatures as low as 205 K being achievable. Maximum second law efficiencies over 60% have been found with the heat source between 350 and 450 K. An experimental system was constructed to verify the theoretical results and to demonstrate the feasibility of the cycle. The investigation focused on the vapor generation and absorption processes, setting up for the power and refrigeration studies to come later. The turbine was simulated with an equivalent expansion process in this initial phase of testing. Results showed that the vapor generation and absorption processes work experimentally, over a range of operating conditions and in simulating the sources and sinks of interest. The potential for combined work and cooling output was evidenced in operating the system. Comparison to ideally simulated results verified that there are thermal and flow losses present, which were assessed to make both improvements in the experimental system and modifications in the simulations to include realistic losses.


Author(s):  
Ricardo Vasquez Padilla ◽  
Gokmen Demirkaya ◽  
D. Yogi Goswami ◽  
Elias L. Stefanakos

A combined power/cooling cycle, which combines the Rankine and absorption refrigeration cycles, uses ammonia-water mixture as a working fluid and produces power and refrigeration while power is the primary goal. This cycle, also known as the Goswami Cycle, can be used as a bottoming cycle using waste heat from a conventional power cycle or as an independent cycle using low temperature sources such as geothermal and solar energy. This paper presents a parametric analysis of the combined cycle. Parametric study of the cycle was carried out in the commercial software Chemcad 6.1. The thermodynamic property data used in simulations were validated with experimental data. Chemcad model was also compared with simulations previously carried out in the process simulator Aspen Plus. The agreement between the two sets has proved the accuracy of the model developed in Chemcad. Then, optimum operating conditions were found for a range of ammonia concentration in the basic solution, isentropic expander efficiency and boiler pressure. It is shown that the cycle can be optimized for net work, cooling output, effective first and exergy efficiencies.


Solar Energy ◽  
2002 ◽  
Author(s):  
Shaoguang Lu ◽  
D. Yogi Goswami

A novel combined power/refrigeration thermodynamic cycle is optimized for thermal performance in this paper. The cycle uses ammonia-water binary mixture as a working fluid and can be driven by various heat sources, such as solar, geothermal and low temperature waste heat. It could produce power as well as refrigeration with power output as a primary goal. The optimization program, which is based on the Generalized Reduced Gradient (GRG) algorithm, can be used to optimize for different objective functions. Examples that maximize second law efficiency, work output and refrigeration output are presented, showing the cycle may be optimized for any desired performance parameter. In addition, cycle performance over a range of ambient temperatures was investigated. It was found that for a source temperature of 360K, which is in the range of flat plate solar collectors, both power and refrigeration outputs are achieved under optimum conditions. All performance parameters, including first and second law efficiencies, power and refrigeration output decrease as the ambient temperature goes up. On the other hand, for a source of 440K, optimum conditions do not provide any refrigeration. However, refrigeration can be obtained even for this temperature under non-optimum performance conditions.


2019 ◽  
Vol 27 (02) ◽  
pp. 1950012 ◽  
Author(s):  
Zeynab Seyfouri ◽  
Mehran Ameri ◽  
Mozaffar Ali Mehrabian

In the present study, a totally heat-driven refrigeration system is proposed and thermodynamically analyzed. This system uses a low-temperature heat source such as geothermal energy or solar energy to produce cooling at freezing temperatures. The proposed system comprises a Rankine cycle (RC) and a hybrid GAX (HGAX) refrigeration cycle, in which the RC provides the power requirement of the HGAX cycle. An ammonia–water mixture is used in both RC and HGAX cycles as the working fluid. A comparative study is conducted in which the proposed system is compared with two other systems using GAX cycle and/or a single stage cycle, as the refrigeration cycle. The study shows that the proposed system is preferred to produce cooling at temperatures from 2∘C to [Formula: see text]C. A detailed parametric analysis of the proposed system is carried out. The results of the analysis show that the system can produce cooling at [Formula: see text]C using a low-temperature heat source at 133.5∘C with the exergy efficiency of about 20% without any input power. By increasing the heat source temperature to 160∘C, an exergy efficiency of 25% can be achieved.


Author(s):  
Maximilian Roedder ◽  
Matthias Neef ◽  
Christoph Laux ◽  
Klaus-P. Priebe

The organic Rankine cycle (ORC) is an established thermodynamic process that converts waste heat to electric energy. Due to the wide range of organic working fluids available the fluid selection adds an additional degree-of-freedom to the early design phase of an ORC process. Despite thermodynamic aspects such as the temperature level of the heat source, other technical, economic, and safety aspects have to be considered. For the fluid selection process in this paper, 22 criteria were identified in six main categories while distinguishing between elimination (EC) and tolerance criteria (TC). For an ORC design, the suggested method follows a practical engineering approach and can be used as a structured way to limit the number of interesting working fluids before starting a detailed performance analysis of the most promising candidates. For the first time, the selection process is applied to a two-stage reference cycle, which uses the waste heat of a large reciprocating engine for cogeneration power plants. It consists of a high temperature (HT) and a low temperature (LT) cycle in which the condensation heat of the HT cycle provides the heat input of the LT cycle. After the fluid selection process, the detailed thermodynamic cycle design is carried out with a thermodynamic design tool that also includes a database for organic working fluids. The investigated ORC cycle shows a net thermal efficiency of about 17.4% in the HT cycle with toluene as the working fluid and 6.2% in LT cycle with isobutane as the working fluid. The electric efficiency of the cogeneration plant increases from 40.4% to 46.97% with the both stages of the two-stage ORC in operation.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Kenneth M. Armijo ◽  
Van P. Carey

This study investigates the cooling of single and multijunction solar cells with an inclined, gravity-assisted heat pipe, containing a 0.05 M 2-propanol/water mixture that exhibits strong concentration Marangoni effects. Heat pipe solar collector system thermal behavior was investigated theoretically and semi-empirically through experimentation of varying input heat loads from attached strip-heaters to simulate waste heat generation of single-junction monocrystalline silicon (Si), and dual-junction GaInP/GaAs photovoltaic (PV) solar cells. Several liquid charge ratios were investigated to determine an optimal working fluid volume that reduces the evaporator superheat while enhancing the vaporization transport heat flux. Results showed that a 45% liquid charge, with a critical heat flux of 114.8 W/cm2, was capable of achieving the lowest superheat levels, with a system inclination of 37 deg. Solar cell semiconductor theory was used to evaluate the effects of increasing temperature and solar concentration on cell performance. Results showed that a combined PV/heat pipe system had a 1.7% higher electrical efficiency, with a concentration ratio 132 suns higher than the stand-alone system. The dual-junction system also exhibited enhanced performance at elevated system temperatures with a 2.1% greater electrical efficiency, at an operational concentration level 560 suns higher than a stand-alone system.


Author(s):  
Chris Martin ◽  
D. Yogi Goswami

A novel combined power-cooling thermodynamic cycle, for use with low-temperature, sensible heat sources, is under experimental investigation. In this power-cooling cycle, absorption condensation is used to regenerate the working fluid. This allows the expander exhaust temperature to drop significantly below the temperature at which absorption is taking place. This is an obvious departure from pure working fluid, Rankine cycle operation and is the source of cooling. Expander exhaust temperatures are controlled by the cycle parameters of expander exit pressure (absorption pressure), expander isentropic efficiency, and the vapor properties (temperature, pressure, and concentration) at expander inlet. Experiments have been performed that show the power-cooling concept to be valid by measuring the expander exit-absorber temperature difference and they highlight the direction for future work.


Sign in / Sign up

Export Citation Format

Share Document