Hybrid Torsional Vibration Damper Incorporating Conventional Centrifugal Pendulum Vibration Absorber and Magnetorheological Damper

Author(s):  
Ehab Abouobaia ◽  
Rama Bhat ◽  
Ramin Sedaghati

A hybrid torsional vibration damper is proposed in this study incorporating a conventional Centrifugal Pendulum Vibration Absorber (CPVA) and a Magnetorheological (MR) damper. While CPVAs are simple and reliable passive torsional vibration absorbers, their performance is limited to the designed tune conditions. MR dampers have recently received considerable attention due to their inherent fail-safe feature, low power requirement and capability to attenuate vibration under unpredictable environmental conditions. The present research aims at developing a novel hybrid torsional vibration damper combining conventional CPVA with the MR damper capable of suppressing torsional vibration at varying excitation frequencies. This research presents results from analytical investigation of rotor systems integrated with the proposed hybrid torsional vibration damper. The system under investigation consists of a rotor with attached hybrid torsional MR damper subjected to an external harmonic torque. The CPVA has been connected to the cylindrical housing of the MR damper. Different cases have been investigated including: 1- Rotor system without any damper, 2- Rotor system with only CPVA, 3- Rotor system with only torsional MR damper and 4- Rotor system with the hybrid torsional damper. Results for each case have been illustrated and compared against one another.

1990 ◽  
Vol 112 (4) ◽  
pp. 440-443 ◽  
Author(s):  
J. L. Nikolajsen ◽  
M. S. Hoque

A new type of vibration damper for rotor systems has been developed and tested. The damper contains electroviscous fluid which solidifies and provides Coulomb-type friction damping when an electric voltage is imposed across the fluid. The damping capacity is controlled by the voltage. The damper has been incorporated in a flexible rotor system and found to be able to reduce high levels of unbalance excited vibrations. Other proven advantages include controllability, simplicity, and no requirement for oil supply. The anticipated capabilities to circumvent the critical speeds and to suppress rotor instabilities are still unconfirmed.


2019 ◽  
Vol 31 (3) ◽  
pp. 321-338
Author(s):  
Jun Wang ◽  
Liang Ma ◽  
Junhong Zhang ◽  
Xin Lu ◽  
YangYang Yu

In this work, a new method of using a magnetorheological damper to improve the self-adaptive ability of a rotor system to rub-impact is developed. To validate the feasibility of this method, a finite element model of the rub-impact rotor system with magnetorheological damper is investigated. A revised formula describing the relationship between the yielding shear stress and magnetic field intensity is proposed. Focusing on the mitigation effect of magnetorheological damper on the nonlinear dynamic response of the rotor system, numerical simulation is conducted. The results show that magnetorheological damper has a considerable effect on the vibration and stability of a rub-impact rotor system. When a suitable current is applied, magnetorheological damper can effectively mitigate the vibration of the rotor system to prevent rub-impact. If contact of the rotor/stator is inevitable, magnetorheological damper can further stabilize heavy rub-impact to slight rub-impact by adjusting the current to an appropriate value. This research reveals the influence mechanisms of magnetorheological damper on normal and rub-impact rotor systems and is helpful for vibration control and fault self-healing of rotating machinery.


Author(s):  
Yukio Ishida ◽  
Tsuyoshi Inoue ◽  
Tomohiko Fukami ◽  
Motohiko Ueda

The centrifugal pendulum vibration absorber (CPVA) has been used for a long time as a method to suppress torsional vibrations. Recently, the roller type CPVA, that has a similar characteristic but simpler structure, has been investigated and started to be used in some automobile engines. However, the dynamical characteristics of the roller type CPVA are not known well. In this study, the nonlinear equations motion of the roller type CPVA are derived and their characterictics are investigated theoretically and experimentally. Especially, the difference between pendulum type CPVA and roller type CPVA is discussed from the viewpoint of the effect of a vibration suppression.


Author(s):  
Takeshi Kudo ◽  
Koki Shiohata ◽  
Osami Matsushita ◽  
Hiroyuki Fujiwara ◽  
Akira Okabe ◽  
...  

An experimental investigation was conducted to confirm the bending-torsion coupled vibration of a rotor system with a bladed disk. For a rotor with relatively long blades such as in the latest low-pressure steam turbines, coupled vibration with shaft torsional vibration represents the bladed disk natural frequency of a nodal diameter (k) of zero (umbrella mode). Today this well-known behavior is reflected in the design of steam turbine rotor systems to prevent the blade vibration resonance due to torque excitation caused by the electric power grid, a standard for which is proposed by ISO 22266-1. The bending-torsion coupled resonance of rotor systems occurs, however, under specific conditions due to rotor unbalance. When the rotor’s rotational speed (Ω) is equal to the sum/difference of the bending natural frequency (ωb) and torsional natural frequency (ωθ), namely, Ω = ωθ ± ωb, there is coupled resonance, which was experimentally observed with a rotor with a relatively simplified shape. In this study, the test apparatus for a flexible rotor system equipped with a shrouded bladed disk driven by an electric motor was constructed to confirm the vibration characteristics, by envisioning the bending-torsion coupled resonance as applied to actual rotor systems of turbo machinery. A radial active magnetic bearing (AMB) was employed to support the rotor by controlling bearing stiffness and damping, and applying lateral directional excitation of forward and backward whirl to the rotor. A servomotor was also equipped at the end of the rotor system to excite the torsional vibration. The resonance of a bladed disk with nodal diameter (k) of zero, which was coupled with the rotor’s torsional vibration, was observed under the above condition (Ω = ωθ − ωb) through AMB excitation of the rotor’s bending natural frequency. Conversely, the torsional excitation caused by the servomotor was confirmed as causing the coupled resonance of rotor bending vibration.


Sign in / Sign up

Export Citation Format

Share Document