Non-Contact Tension Sensing Using Fe-Ga Alloy Strip

Author(s):  
JinHyeong Yoo ◽  
James B. Restorff ◽  
Marilyn Wun-Fogle

This paper describes a proof-of-concept non-contact strain sensor, using a magnetostrictive Fe-Ga alloy (Galfenol). Magnetostrictive materials demonstrate dimensional changes in response to a magnetic field. In contrast with typical piezoceramic materials, Galfenol is the most ductile of the current transduction materials and appears to have an excellent ability to withstand mechanical shock and tension. Galfenol also exhibits the inverse (Villari) effect: both the magnetization and permeability change in response to an applied stress. Galfenol has low hysteresis loses, less than ∼10% of its transduction potential over a range of −20 to +80 °C. The magnetization’s response to stress depends strongly on both magnetic field bias and alloy composition. Galfenol’s Villari effect can be used in various sensor configurations together with either a giant magnetoresistance (GMR) sensor, Hall Effect sensor or pickup coil to sense the magnetization / permeability changes in Galfenol when stressed. The sensor described in this paper utilizes the permeability change, which is not time dependent and can measure static loads. The design reported here targets low force, low frequency applications, such as inclination measurements and stress monitoring. The sensor was able to measure both static and dynamic stress. The static sensitivity was +3.64 Oe/kN for the Hall sensor close to the bias magnet and −1.49 Oe/kN for the Hall sensor at the other end of the Galfenol strip. We conclude that a Galfenol strain sensor is a viable candidate for bolt stress monitoring in critical applications.

Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mauludi Manfaluthy

WHO (World Health Organization) concludes that not much effect is caused by electric field up to 20 kV / m in humans. WHO standard also mentions that humans will not be affected by the magnetic field under  100 micro tesla and that the electric field will affect the human body with a maximum standard of 5,000 volts per meter. In this study did not discuss about the effect of high voltage radiation SUTT (High Voltage Air Channel) with human health. The research will focus on energy utilization of SUTT radiation. The combination of electric field and magnetic field on SUTT (70-150KV) can generate electromagnetic (EM) and radiation waves, which are expected to be converted to turn on street lights around the location of high voltage areas or into other forms. The design of this prototype works like an antenna in general that captures electromagnetic signals and converts them into AC waves. With a capacitor that can store the potential energy of AC and Schottky diode waves created specifically for low frequency waves, make the current into one direction (DC). From the research results obtained the current generated from the radiation is very small even though the voltage is big enough.Keywords : Radiance Energy, Joule Thief, and  LED Module.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1395
Author(s):  
Danila Kostarev ◽  
Dmitri Klimushkin ◽  
Pavel Mager

We consider the solutions of two integrodifferential equations in this work. These equations describe the ultra-low frequency waves in the dipol-like model of the magnetosphere in the gyrokinetic framework. The first one is reduced to the homogeneous, second kind Fredholm equation. This equation describes the structure of the parallel component of the magnetic field of drift-compression waves along the Earth’s magnetic field. The second equation is reduced to the inhomogeneous, second kind Fredholm equation. This equation describes the field-aligned structure of the parallel electric field potential of Alfvén waves. Both integral equations are solved numerically.


Sign in / Sign up

Export Citation Format

Share Document