Experimental Study on Power Generation and Dynamical Behavior of the Cantilevered Piezoelectric Beam With the Unilateral Layer Separate

Author(s):  
Wei Xia ◽  
Ming Hui Yao ◽  
Wei Zhang

This paper investigates the complicated dynamic behavior and power generation efficiency of the cantilevered laminated composite piezoelectric beam with the unilateral layer separate. The effect of the external excitation on the voltage output, the impacts of the layered length of composite layers and the influence of the magnetic distance on the voltage output and the effective frequency bandwidth are examined. Simultaneously, the output voltage and the effective frequency bandwidth of the traditional cantilevered laminated composite piezoelectric beam are measured experimentally to verify the developed model. The amplitude of the harmonic excitation is given the certain value and is not changed. Experimental results show that the developed structure has lower natural frequency, great voltage output and great effective frequency bandwidth when the length of the separate parts between composite layers is in the range. For the different layered lengths of the developed bistable piezoelectric beam, there exist the optimal magnetic distance and an optimal layered length, respectively. The power generation efficiency of the developed bistable piezoelectric beam is better than that of the developed monostable piezoelectric beam. When the layered length of the separate parts between composite layers is optimal, the voltage output of the piezoelectric beam has four peak voltages. In addition, the power generation efficiency of the developed structure are superior to that of the traditional one. The maximum peak voltage of this structure is 6.73 times than that of the traditional piezoelectric beam, and its effective frequency bandwidth promotes 8.4 times.

Author(s):  
Ming Hui Yao ◽  
Peng Fei Liu ◽  
Wei Zhang ◽  
Dong Xing Cao

This paper presents an experimental investigation on the bistable piezoelectric electromagnetic combined energy harvester based on vibration. The end of the piezoelectric cantilever beam has a tip magnet. The opposite of the piezoelectric cantilever beam has a coil, a spring and a magnet. The power generation efficiency and dynamic behaviors for three different kinds of the piezoelectric cantilever beam structures are experimentally studied, such as the conventional piezoelectric cantilever beam, the bistable piezoelectric cantilever beam introduced spring and magnet, and the bistable piezoelectric cantilever beam introduced spring, magnet and coil. Experimental results show that the introduction of the spring and magnet improves the maximum output voltage and broaden the effective frequency bandwidth. The power generation efficiency of the system is improved by adding the coil. Complicated nonlinear dynamic behaviors occur in the system, when the spring and the magnet are introduced. These nonlinear dynamic behaviors broaden the effective frequency bandwidth.


2015 ◽  
Vol 137 (1) ◽  
Author(s):  
Minghui Yao ◽  
Wei Zhang ◽  
Zhigang Yao

This paper investigates the complicated dynamics behavior and the evolution law of the nonlinear vibrations of the simply supported laminated composite piezoelectric beam subjected to the axial load and the transverse load. Using the third-order shear deformation theory and the Hamilton's principle, the nonlinear governing equations of motion for the laminated composite piezoelectric beam are derived. Applying the method of multiple scales and Galerkin's approach to the partial differential governing equation, the four-dimensional averaged equation is obtained for the case of principal parametric resonance and 1:9 internal resonance. From the averaged equations obtained, numerical simulation is performed to study nonlinear vibrations of the laminated composite piezoelectric beam. The axial load, the transverse load, and the piezoelectric parameter are selected as the controlling parameters to analyze the law of complicated nonlinear dynamics of the laminated composite piezoelectric beam. Based on the results of numerical simulation, it is found that there exists the complex nonlinear phenomenon in motions of the laminated composite piezoelectric beam. In summary, numerical studies suggest that periodic motions and chaotic motions exist in nonlinear vibrations of the laminated composite piezoelectric beam. In addition, it is observed that the axial load, the transverse load and the piezoelectric parameter have significant influence on the nonlinear dynamical behavior of the beam. We can control the response of the system from chaotic motions to periodic motions by changing these parameters.


2016 ◽  
Vol 42 (2) ◽  
pp. 76-82
Author(s):  
Akira Saito ◽  
Yuta Sasaki ◽  
Kazuhide Kimbara ◽  
Masao Sudou

2014 ◽  
Vol 14 (08) ◽  
pp. 1440018 ◽  
Author(s):  
Marek Borowiec ◽  
Grzegorz Litak ◽  
Michael I. Friswell ◽  
Sondipon Adhikari

The vertical elastic beam with vertical ambient excitation is proposed as an energy harvester. The beam has a tip mass and piezoelectric patches which transduce the bending strains induced by the stochastic force caused by vertical kinematic forcing into electrical charge. We focus on the region with a fairly large amplitude of voltage output where the beam overcomes the potential barrier. Increasing the noise level allows the transition from single well oscillations to inter-well stochastic jumps with more power generation.


Author(s):  
Wei Wei ◽  
Shuangying Ding ◽  
Silin Zheng ◽  
Jingjing Ma ◽  
Tong Niu ◽  
...  

How to achieve the continuous improvement of the environmental performance level of the power industry within the requirements of clean and low-carbon energy development is the fundamental requirement and inevitable choice for the construction of ecological civilization and sustainable development. From the perspective of environmental protection, based on the Data Envelopment Analysis (DEA) method and the internal mechanism of power system production and supply, the power industry environmental efficiency evaluation index system was constructed, and the two-stage Network Slack-based Measure (NSBM) model considering undesired output was used to calculate China’s 30 provinces and municipalities from 1998 to 2019. The environmental efficiency is divided into two links: power generation efficiency and transmission and distribution efficiency. The study found that, within the research interval, the overall environmental efficiency of China’s 30 provinces is low, and the differences between provinces and cities are large, but they have gradually developed in a better direction after 2015. The power generation efficiency of the first link in most provinces and municipalities is higher than the transmission and distribution efficiency of the second link, and the low transmission and distribution efficiency is an important reason for the low comprehensive level of environmental efficiency. The overall evolution trend of environmental efficiency in the six regions of China is roughly the same, but the regional differences are obvious, showing a trend of “high in the southeast and low in the northwest”. The economic and natural resource differences in different provinces and cities in each region have led to varying degrees of redundancy in five aspects, including investment in power assets, installed power generation capacity, and length of transmission lines, which seriously affect the environmental efficiency of the power industry. This research attempts to open the “black box” of the environmental efficiency conversion process of the power industry, which can provide directions and strategic suggestions for the improvement of the efficiency of the power industry in China.


Author(s):  
Abdul Hadi Mohaimin ◽  
Md. Rakib Uddin ◽  
Hasnul Hashim

Solar panel power output can still be improved through various means. The aim of this paper is to investigate the effect on solar panel power generation due to Fresnel lens distance to the solar panel. The use of Fresnel lens is to magnify the light intensity from the sun to achieve higher solar collectability of solar panel which may increase power output. The Fresnel lens is to be positioned on top of the solar panel to concentrate the sunlight on to the solar panel. Voltages are measured by an electronic microcontroller with a 10-second interval while power output are determined by the product of voltage and load resistance connected to the solar panel. Immediate results were an instantaneous rise in voltage output but gradually decreasing with increase heat absorption in the solar panel. In the long run, voltage and power outputs were obtained at 0, 5, 10, 20, 30 and 40 cm Fresnel lens distance to the solar panel where all results saw the reduction in voltage and power generation from the solar panel incorporated with Fresnel lens compared to one without due to high ambient temperature. Because of this, it is deemed unfeasible to use Fresnel lens for solar power generation in hot areas such as those with equatorial or tropical climate.


Sign in / Sign up

Export Citation Format

Share Document