scholarly journals Suspension Hammering Tester for Concrete Walls

Author(s):  
Saeko Tokuomi ◽  
Kazuya Mori
Keyword(s):  
2020 ◽  
Vol 21 (5) ◽  
pp. 1999-2010
Author(s):  
Peng Yuan‐Yuan ◽  
Wang Yu‐Hang ◽  
Qian Jia‐Ru

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 393
Author(s):  
Huthaifa Obeidat ◽  
Atta Ullah ◽  
Ali AlAbdullah ◽  
Waqas Manan ◽  
Omar Obeidat ◽  
...  

This paper outlines a study of the effect of changing the electrical properties of materials when applied in the Wireless InSite (WI) ray-tracing software. The study was performed at 60 GHz in an indoor propagation environment and supported by Line of Sight (LoS) and Non-LoS measurements data. The study also investigates other factors that may affect the WI sensitivity, including antenna dimensions, antenna pattern, and accuracy of the environment design. In the experiment, single and double reflections from concrete walls and wooden doors are analysed. Experimental results were compared to those obtained from simulation using the WI. It was found that materials selected from the literature should be similar to those of the environment under study in order to have accurate results. WI was found to have an acceptable performance provided certain conditions are met.


2011 ◽  
Vol 82 ◽  
pp. 559-564 ◽  
Author(s):  
Olga Markogiannaki ◽  
Ioannis Tegos

The scope of the study is to examine of the possibility of applying steel ties, which can consist of common steel wires, as means to restrain the seismic displacements of buildings structural systems. The method seems to be competitive to the conventional ones, since fewer disturbances are created during the retrofitting works, i.e. the installation of ties as compared to the conventional strengthening methods. The method also proved to be more economic than the conventional method of constructing and infilling concrete walls in the vulnerable structural system. Initially, the efficiency of the ties was studied in multistory building models, such as frame, combined frame-wall and combined frame-wall without beams. Based on the results of the analytical study, the method was applied on a 5 storey existing and seismically deficient building. More specifically, the long side of the building was chosen for the method’s application. The last choice was deemed more preferable due to the fact that it has no openings which allowed the easy application of straight ties. The one end of the ties is anchored in the concrete slab of the upper stories, while the other end on the basement’s upper concrete slab. Although the seismic demand was higher for the implemented solution of the steel wires due to multiple loading, caused by the low value of the seismic performance coefficient equal to 1.5, an adequate level of earthquake resistance was achieved. The results of the case study confirmed the applicability of the proposed method. It should be underlined that the ties method looks promising in the field of structures retrofitting and could be studied analytically in campaigns, either independently or in combination with the conventional in concrete shear wall method.


1995 ◽  
Vol 156 (1-2) ◽  
pp. 147-158 ◽  
Author(s):  
P. Majumdar ◽  
A. Gupta ◽  
A. Marchertas

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Weiwei Li ◽  
Weiqing Liu ◽  
Shuguang Wang ◽  
Dongsheng Du

The improvement effect of a new strengthening strategy on dynamic action of masonry structure, by installing prefabricated concrete walls on the outer facades, is validated by shaking table test presented in this paper. We carried out dynamic tests of two geometrically identical five-story reduced scaled models, including an unstrengthened and a strengthened masonry model. The experimental analysis encompasses seismic performances such as cracking patterns, failure mechanisms, amplification factors of acceleration, and displacements. The results show that the strengthened masonry structure shows much more excellent seismic capacity when compared with the unstrengthened one.


1996 ◽  
Vol 30 (11) ◽  
pp. 654-663 ◽  
Author(s):  
V. N. Zhukov ◽  
S. V. Ternavskii ◽  
Yu. O. Zal'tsman ◽  
A. A. Lyubomirov

Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 50
Author(s):  
Hideyuki Tsukagoshi ◽  
Yuichi Osada

A universal suction cup that can stick to various objects expands the areas in which robots can work. However, the size, shape, and surface roughness of objects to which conventional suction cups can stick are limited. To overcome this challenge, we propose a new hybrid suction cup structure that uses the adhesive force of sticky gel and the suction force of negative pressure. In addition, a flexible and thin pneumatic balloon actuator with a check valve function is installed in the interior, enabling the controllable detachment from objects. The prototype has an outer diameter of 55 mm, a weight of 18.8 g, and generates an adsorption force of 80 N in the vertical direction and 60 N in the shear direction on porous walls where conventional suction cups struggle to adsorb. We confirmed that parts smaller than the suction cup and fragile potato chips are adsorbed by the prototype. Finally, the effectiveness of the proposed method is verified through experiments in which a drone with the prototypes can be attached to and detached from concrete walls and ceilings while flying; the possibility of adsorption to dusty and wet plates is discussed.


2021 ◽  
Author(s):  
Achim Drebs ◽  
Tim Sinsel ◽  
Kirsti Jylhä

<p>In our research we describe the micro-climatological influences of two heat-waves around and the air temperature development in a certain old people’s home in Helsinki, Finland. The stand-alone six-storey concrete building was erected in the late 1970’s and represents the prevailing construction type of this area. The building is located on a slightly southwards declining slope.</p><p>The first simulation used real meteorological forcing-data from the heat-wave event in summer 2018, which lasted from July, 13<sup>th</sup> until August, 5<sup>th</sup>. In this period the daily maximum air temperature reached almost every day 25 °C and more, sometimes even more than 30 °C. All air temperature, wind, humidity, and solar radiation (cloudiness) measurements were conducted at a near-by synoptical weather station.</p><p>The second simulation used fourteen-day constructed meteorological forcing-data, based on a clear-sky, slowly increasing air temperature, higher than normal humidity, and low wind conditions assumption starting on July, 13<sup>th</sup> (day 194 of the year).</p><p>We used the holistic ENVI-met simulation soft-ware to simulate the physical environment around the old people’s home and especially the energy fluxes inside the concrete walls to explain the needs for cooling demands.</p><p>The research is part of the HEATCLIM-project financed by the Academy of Finland Science Program CLIHE (2020-2023).</p>


Sign in / Sign up

Export Citation Format

Share Document