Micro-climatological influences on temperature condition in an old people’s home in Helsinki, Finland, caused by extended heat-waves 

Author(s):  
Achim Drebs ◽  
Tim Sinsel ◽  
Kirsti Jylhä

<p>In our research we describe the micro-climatological influences of two heat-waves around and the air temperature development in a certain old people’s home in Helsinki, Finland. The stand-alone six-storey concrete building was erected in the late 1970’s and represents the prevailing construction type of this area. The building is located on a slightly southwards declining slope.</p><p>The first simulation used real meteorological forcing-data from the heat-wave event in summer 2018, which lasted from July, 13<sup>th</sup> until August, 5<sup>th</sup>. In this period the daily maximum air temperature reached almost every day 25 °C and more, sometimes even more than 30 °C. All air temperature, wind, humidity, and solar radiation (cloudiness) measurements were conducted at a near-by synoptical weather station.</p><p>The second simulation used fourteen-day constructed meteorological forcing-data, based on a clear-sky, slowly increasing air temperature, higher than normal humidity, and low wind conditions assumption starting on July, 13<sup>th</sup> (day 194 of the year).</p><p>We used the holistic ENVI-met simulation soft-ware to simulate the physical environment around the old people’s home and especially the energy fluxes inside the concrete walls to explain the needs for cooling demands.</p><p>The research is part of the HEATCLIM-project financed by the Academy of Finland Science Program CLIHE (2020-2023).</p>

2021 ◽  
Author(s):  
Achim Drebs ◽  
Tim Sinsel ◽  
Kirsti Jylhä

<p>Due to geographical location extended heat-waves occurs in coastal high-latitude areas or cities rather seldom.</p><p>In our research we describe influences of roof- and wall-greening on micro-meteorological conditions around (and in?) a moderate insulated stand-alone six-storey concrete building in Helsinki, Finland. The block of flats serves as an old people's home and being built in the late 1970’s, it represents the prevailing construction type of that era. The building is located on a slightly southwards declining slope, and the neighbouring buildings are 30 meters away.</p><p>We applied the holistic ENVI-met simulation soft-ware and used real meteorological forcing-data as input for the simulations.  The study focused on a 24-day heat-wave event in summer 2018. During the period from July, 13<sup>th</sup> until August, 5<sup>th</sup>, the daily maximum air temperature reached almost every day 25 °C and more, sometimes even more than 30 °C. All one-hour air temperature, wind, humidity, and solar radiation (cloudiness) measurements were conducted at a near-by synoptic weather station.</p><p> The ENVI-met soft-ware has standard set-ups for green roof and green wall properties for simulations of their impacts on the thermal condition. We simulated different levels of insulation (poor, moderate, and good) and used the roof- and wall-greening separately or together in order to find the optimal combination of different greening options. Furthermore, we analysed the physical environment around the old people’s home from the aspect of human comfort, especially the influences of the simulated green infrastructures in front of the building.</p><p>The research is part of the HEATCLIM-project financed by the Academy of Finland Science Program CLIHE (2020-2023).</p>


Geografie ◽  
2019 ◽  
Vol 124 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Arkadiusz M. Tomczyk ◽  
Ewa Bednorz ◽  
Marek Półrolniczak

The objective of the paper was to characterize the occurrence of heat waves in Europe between 1976 and 2015 and to determine circulation conditions causing their occurrence. The heat waves were recognized as a sequence of at least 5 consecutive hot days. The hot day was defined as a day on which daily maximum air temperature was higher than 95th percentile of all the values in the analyzed period. The conducted research showed an increase in the number of heat waves and their duration in the analyzed period. The longest heat wave occurred in 2010, in Moscow, which lasted 45 days. The most intense changes were observed in the eastern and south-eastern regions. The occurrence of heat waves was mainly connected with positive anomalies of atmospheric pressure at sea level, geopotential height of 500 hPa, and temperature on isobaric surface 850 hPa.


2015 ◽  
Vol 35 (4) ◽  
pp. 769-777 ◽  
Author(s):  
Izabele B. Kruel ◽  
Monica C. Meschiatti ◽  
Gabriel C. Blain ◽  
Ana M. H. de Ávila

ABSTRACT Changes in the frequency of occurrence of extreme weather events have been pointed out as a likely impact of global warming. In this context, this study aimed to detect climate change in series of extreme minimum and maximum air temperature of Pelotas, State of Rio Grande do Sul, (1896 - 2011) and its influence on the probability of occurrence of these variables. We used the general extreme value distribution (GEV) in its stationary and non-stationary forms. In the latter case, GEV parameters are variable over time. On the basis of goodness-of-fit tests and of the maximum likelihood method, the GEV model in which the location parameter increases over time presents the best fit of the daily minimum air temperature series. Such result describes a significant increase in the mean values of this variable, which indicates a potential reduction in the frequency of frosts. The daily maximum air temperature series is also described by a non-stationary model, whose location parameter decreases over time, and the scale parameter related to sample variance rises between the beginning and end of the series. This result indicates a drop in the mean of daily maximum air temperature values and increased dispersion of the sample data.


2009 ◽  
Vol 2 (1) ◽  
pp. 35-56 ◽  
Author(s):  
Marek Kejna ◽  
Andrzej Araźny ◽  
Rafał Maszewski ◽  
Rajmund Przybylak ◽  
Joanna Uscka-Kowalkowska ◽  
...  

Abstract In this study grid data of daily maximum and minimum air temperatures taken from the NCEP/NCAR reanalysis for the territory of Poland for the years 1951-2005 have been used as a basis for an analysis of the spatial distribution of daily maximum and minimum air temperature, the frequency of characteristic days and the variability of these parameters in the period analysed. The results obtained were then compared to the variability in atmospheric circulation in Europe, described by the North Atlantic Oscillation (NAO) index.


2018 ◽  
Vol 57 ◽  
pp. 02010 ◽  
Author(s):  
Katarzyna Rozbicka ◽  
Tomasz Rozbicki

The study presents the characteristics of the occurrence of smog episodes - days with exceeded the limit value of 8-hour tropospheric ozone concentration (120 μg.m-3) with the occurrence of hot days (maximum air temperature greater than 25°C), very hot (maximum air temperature greater than 30°C) and heat waves during 13-year period 2004-2016 in the area of Warsaw, Poland. In the analyzed period, the average number of hot days was 45, and very hot days was 8. The highest number of these days occurred in 2015, 54 and 20 days respectively. Heat waves were short and lasted usually 3-4 days. The highest number of them was recorded in 2010 and 2015 (14 days). The highest ozone concentration value 189 μg.m-3was recorded on 28 May 2005, thus exceeding the information threshold (180 μg.m-3for the value of 1 hour ozone concentration). However, the number of days with the exceeded limit value of ozone concentration was not in any year exceeded the target value, i.e. 25 days in a calendar year. The relatively stronger relationship (R=0.513) in comparison to others obtained between average maximum temperature during LTO exceedance days and average ozone concentration during these days but it was not statistically significant.


2015 ◽  
Vol 35 (13) ◽  
pp. 3862-3878 ◽  
Author(s):  
Benoit Parmentier ◽  
Brian J. McGill ◽  
Adam M. Wilson ◽  
James Regetz ◽  
Walter Jetz ◽  
...  

2010 ◽  
Vol 49 (8) ◽  
pp. 1634-1648 ◽  
Author(s):  
E. Scott Krayenhoff ◽  
James A. Voogt

Abstract The authors combine urban and soil–vegetation surface parameterization schemes with one-dimensional (1D) boundary layer mixing and radiation parameterizations to estimate the maximum impact of increased surface albedo on urban air temperatures. The combined model is evaluated with measurements from an urban neighborhood in Basel, Switzerland, and the importance of surface–atmosphere model coupling is demonstrated. Impacts of extensive albedo increases in two Chicago, Illinois, neighborhoods are modeled. Clear-sky summertime reductions of diurnal maximum air temperature for the residential neighborhood (λp = 0.33) are −1.1°, −1.5°, and −3.6°C for uniform roof albedo increases of 0.19, 0.26, and 0.59, respectively; reductions are about 40% larger for the downtown core (λp = 0.53). Realistic impacts will be smaller because the 1D modeling approach ignores advection; a lake-breeze scenario is modeled and temperature reductions decline by 80%. Assuming no advection, the analysis is extended to seasonal and annual time scales in the residential neighborhood. Yearly average temperature decreases for a 0.59 roof albedo increase are about −1°C, with summer (winter) reductions about 60% larger (smaller). Annual cooling degree-day decreases are approximately offset by heating degree-day increases and the frequency of very hot days is reduced. Despite the variability of modeling approaches and scenarios in the literature, a consistent range of air temperature sensitivity to albedo is emerging; a 0.10 average increase in neighborhood albedo (a 0.40 roof albedo increase for λp = 0.25) generates a diurnal maximum air temperature reduction of approximately 0.5°C for “ideal” conditions, that is, a typical clear-sky midlatitude summer day.


Sign in / Sign up

Export Citation Format

Share Document