Hybrid wavelength-division-multiplexing transport systems based on praseodymium-doped fiber amplifiers

2004 ◽  
Vol 43 (11) ◽  
pp. 2719
Author(s):  
Shah-Jye Tzeng
2019 ◽  
Vol 0 (0) ◽  
Author(s):  
I. S. Amiri ◽  
Fatma Mohammed Aref Mahmoud Houssien ◽  
Ahmed Nabih Zaki Rashed ◽  
Abd El-Naser A. Mohammed

AbstractThe 16-channels dense wavelength division multiplexing (DWDM) systems have been optimized by utilizing hybrid configurations of conventional optical fiber amplifiers (EDFA, RAMAN and SOA) and optical photodetectors (PIN, APD(Si) and APD(InGaAs)). The DWDM systems were implemented for 5 Gb/s channel speed using one of these configurations with 100 GHz channel spacing and 25 km amplifying section. The hybrid configurations are the combinations of (PIN + EDFA), (PIN + RAMAN), (PIN + SOA), (APD(Si) + EDFA), (APD(Si) + RAMAN), (APD(Si) + SOA), (APD(InGaAs) + EDFA), (APD(InGaAs) + RAMAN) and (APD(InGaAs) + SOA). Based on BER, Q-factor and eye diagrams, the performance was compared for these configurations under influences of various thermal noise levels of photodetectors over different fiber lengths ranging from 25 km up to 150 km. The results revealed that both APD structures give optimum performance at input power Pin = 5 dBm due to high internal avalanche gain. EDFA outperforms RAMAN and SOA amplifiers. SOA amplifier shows degraded performance because of nonlinearity effects induced. RAMAN amplifier seems to be the best alternative for long reach DWDM systems because it minimizes the effects of fiber nonlinearities. The configuration (APD(Si) + EDFA) is the most efficient and recommended to be used for transmission distance beyond 100 km due to its larger Q-factor.


2019 ◽  
Vol 40 (4) ◽  
pp. 341-346
Author(s):  
Kulwinder Singh ◽  
Karan Goel ◽  
Kamaljit Singh Bhatia ◽  
Hardeep Singh Ryait

Abstract Different fiber amplifiers such as semiconductor optical amplifier, erbium-doped fiber amplifier and erbium ytterbium-co-doped fiber amplifier (EYCDFA) are investigated for 16×40 GB/s wavelength division multiplexing system. Various performance parameters including Q-factor, bit error rate, jitter, eye opening and eye closure are observed and analyzed. It is reported that EYCDFA is a better choice among the tested amplifiers. The proposed system is also investigated in terms of transmission distance.


1997 ◽  
Vol 25 (2) ◽  
pp. 158-163
Author(s):  
Motoki KAKUI ◽  
Tomonori KASHIWADA ◽  
Koji NAKAZATO ◽  
Masashi ONISHI ◽  
Masayuki SHIGEMATSU ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Md. Asraful Sekh ◽  
Mijanur Rahim ◽  
Anjumanara Begam

Abstract In this paper, design of erbium-doped fiber amplifiers (EDFA) based 16 channel wavelength-division multiplexing (WDM) system for different pump powers and input signal levels using counter propagating pumping scheme is reported. Wavelength range between 1548 and 1560 nm in C-band with channel spacing of 0.75 nm at a bit rate of 10 Gbps are used. Input power given to all the channels is taken between −20 and −35 dBm with 3 dBm variation. Pump power levels between 100 and 500 mW at 980 nm wavelength are used. Low gain flatness with high gains and low noise figures are achieved with the proposed scheme.


1998 ◽  
Vol 531 ◽  
Author(s):  
S. Takagi ◽  
N. Ishii ◽  
D. Hashimoto

AbstractThis paper presents the current advances in the development of materials in the field of telecommunication wiring together with the background which created the need for the new technologies. The background is somewhat unique to the current socio-economical situation of Japan. The key technical areas, which are addressed in this paper, are; (1) fibers for transmission of over 1 Tbps by utilizing WDM (wavelength division multiplexing), (2) fibers for fiber amplifiers to replace repeaters within trunk lines, (3) high density cables with over 1000 fiber counts, (4) ABF (air blown fiber) for access system, (5) plastic optical fibers wiring in premises or offices operating at the transmission speed of over 200 Mbps.


2002 ◽  
Vol 14 (2) ◽  
pp. 230-232 ◽  
Author(s):  
Chien-Chung Lee ◽  
Yung-Kuang Chen ◽  
Chia-Hsiung Chang ◽  
Kai-Ming Feng ◽  
Sohn-Ling Tzeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document