Integrated visible and near-infrared, shortwave infrared, and longwave infrared full-range hyperspectral data analysis for geologic mapping

2015 ◽  
Vol 9 (1) ◽  
pp. 096005 ◽  
Author(s):  
Fred A. Kruse
2021 ◽  
Vol 13 (13) ◽  
pp. 2604
Author(s):  
Patrick Osei Darko ◽  
Margaret Kalacska ◽  
J. Pablo Arroyo-Mora ◽  
Matthew E. Fagan

Hyperspectral remote sensing across multiple spatio-temporal scales allows for mapping and monitoring mangrove habitats to support urgent conservation efforts. The use of hyperspectral imagery for assessing mangroves is less common than for terrestrial forest ecosystems. In this study, two well-known measures in statistical physics, Mean Information Gain (MIG) and Marginal Entropy (ME), have been adapted to high spatial resolution (2.5 m) full range (Visible-Shortwave-Infrared) airborne hyperspectral imagery. These two spectral complexity metrics describe the spatial heterogeneity and the aspatial heterogeneity of the reflectance. In this study, we compare MIG and ME with surface reflectance for mapping mangrove extent and species composition in the Sierpe mangroves in Costa Rica. The highest accuracy for separating mangroves from forest was achieved with visible-near infrared (VNIR) reflectance (98.8% overall accuracy), following by shortwave infrared (SWIR) MIG and ME (98%). Our results also show that MIG and ME can discriminate dominant mangrove species with higher accuracy than surface reflectance alone (e.g., MIG–VNIR = 93.6% vs. VNIR Reflectance = 89.7%).


2020 ◽  
Vol 12 (21) ◽  
pp. 3573
Author(s):  
J. Malin Hoeppner ◽  
Andrew K. Skidmore ◽  
Roshanak Darvishzadeh ◽  
Marco Heurich ◽  
Hsing-Chung Chang ◽  
...  

Chlorophyll content, as the primary pigment driving photosynthesis, is directly affected by many natural and anthropogenic disturbances and stressors. Accurate and timely estimation of canopy chlorophyll content (CCC) is essential for effective ecosystem monitoring to allow for successful management interventions to occur. Hyperspectral remote sensing offers the possibility to accurately estimate and map canopy chlorophyll content. In the past, research has predominantly focused on the use of hyperspectral data on canopy chlorophyll content retrieval of crops and grassland ecosystems. Therefore, in this study, a temperate mixed forest, the Bavarian Forest National Park in Germany, was chosen as the study site. We compared different statistical models (narrowband vegetation indices (VIs), partial least squares regression (PLSR) and random forest (RF)) in their accuracy to predict CCC using airborne hyperspectral data. The airborne hyperspectral imagery was acquired by the AisaFenix sensor (623 bands; 3.5 nm spectral resolution in the visible near-infrared (VNIR) region, and 12 nm spectral resolution in the shortwave infrared (SWIR) region; 3 m spatial resolution) on July 6, 2017. In situ leaf chlorophyll content and leaf area index measurements were sampled from the upper canopy of coniferous, mixed, and deciduous forest stands in July and August 2017. The study yielded the highest retrieval accuracies with PLSR (root mean square error (RMSE) = 0.25 g/m2, R2 = 0.66). It further indicated specific spectral regions within the visible (390–400 nm and 470–540 nm), red edge (680–780 nm), near-infrared (1050–1100 nm) and shortwave infrared regions (2000–2270 nm) that were important for CCC retrieval. The results showed that forest CCC can be mapped with relatively high accuracies using image spectroscopy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Salah El-Hendawy ◽  
Nasser Al-Suhaibani ◽  
Majed Alotaibi ◽  
Wael Hassan ◽  
Salah Elsayed ◽  
...  

Abstract The timely estimation of growth and photosynthetic-related traits in an easy and nondestructive manner using hyperspectral data will become imperative for addressing the challenges of environmental stresses inherent to the agricultural sector in arid conditions. However, the handling and analysis of these data by exploiting the full spectrum remains the determining factor for refining the estimation of crop variables. The main objective of this study was to estimate growth and traits underpinning photosynthetic efficiency of two wheat cultivars grown under simulated saline field conditions and exposed to three salinity levels using hyperspectral reflectance information from 350–2500 nm obtained at two years. Partial least squares regression (PLSR) based on the full spectrum was applied to develop predictive models for estimating the measured parameters in different conditions (salinity levels, cultivars, and years). Variable importance in projection (VIP) of PLSR in combination with multiple linear regression (MLR) was implemented to identify important waveband regions and influential wavelengths related to the measured parameters. The results showed that the PLSR models exhibited moderate to high coefficients of determination (R2) in both the calibration and validation datasets (0.30–0.95), but that this range of R2 values depended on parameters and conditions. The PLSR models based on the full spectrum accurately and robustly predicted three of four parameters across all conditions. Based on the combination of PLSR-VIP and MLR analysis, the wavelengths selected within the visible (VIS), red-edge, and middle near-infrared (NIR) wavebands were the most sensitive to all parameters in all conditions, whereas those selected within the shortwave infrared (SWIR) waveband were effective for some parameters in particular conditions. Overall, these results indicated that the PLSR analysis and band selection techniques can offer a rapid and nondestructive alternative approach to accurately estimate growth- and photosynthetic-related trait responses to salinity stress.


Author(s):  
J. G. Rejas Ayuga ◽  
R. Martínez Marín ◽  
M. Marchamalo Sacristán ◽  
J. Bonatti ◽  
J. C. Ojeda

We have studied the spectral features of reflectance and emissivity in the pattern recognition of urban materials in several single hyperspectral scenes through a comparative analysis of anomaly detection methods and their relationship with city surfaces with the aim to improve information extraction processes. Spectral ranges of the visible-near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) from hyperspectral data cubes of AHS sensor and HyMAP and MASTER of two cities, Alcalá de Henares (Spain) and San José (Costa Rica) respectively, have been used. <br><br> In this research it is assumed no prior knowledge of the targets, thus, the pixels are automatically separated according to their spectral information, significantly differentiated with respect to a background, either globally for the full scene, or locally by image segmentation. Several experiments on urban scenarios and semi-urban have been designed, analyzing the behaviour of the standard RX anomaly detector and different methods based on subspace, image projection and segmentation-based anomaly detection methods. A new technique for anomaly detection in hyperspectral data called DATB (Detector of Anomalies from Thermal Background) based on dimensionality reduction by projecting targets with unknown spectral signatures to a background calculated from thermal spectrum wavelengths is presented. First results and their consequences in non-supervised classification and extraction information processes are discussed.


2020 ◽  
Vol 86 (11) ◽  
pp. 695-700
Author(s):  
Kathleen E. Johnson ◽  
Krzysztof Koperski

Cuprite, Nevada, is a location well known for numerous studies of its hydrothermal mineralogy. This region has been used to validate geological interpretations of airborne hyperspectral imagery (AVIRIS HSI ), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER ) imagery, and most recently eight-band WorldView-3 shortwave infrared (SWIR ) imagery. WorldView-3 is a high-spatial-resolution commercial multispectral satellite sensor with eight visible-to-near-infrared (VNIR ) bands (0.42–1.04 μm) and eight SWIR bands (1.2–2.33 μm). We have applied mineral mapping techniques to all 16 bands to perform a geological analysis of the Cuprite, Nevada, location. Ground truth for the training and validation was derived from AVIRIS hyperspectral data and United States Geological Survey mineral spectral data for this location. We present the results of a supervised mineral-mapping classification applying a random-forest classifier. Our results show that with good ground truth, WorldView-3 SWIR + VNIR imagery produces an accurate geological assessment.


2016 ◽  
Author(s):  
Kenta Taniguchi ◽  
Kenta Obata ◽  
Masayuki Matsuoka ◽  
Hiroki Yoshioka

Author(s):  
J. G. Rejas Ayuga ◽  
R. Martínez Marín ◽  
M. Marchamalo Sacristán ◽  
J. Bonatti ◽  
J. C. Ojeda

We have studied the spectral features of reflectance and emissivity in the pattern recognition of urban materials in several single hyperspectral scenes through a comparative analysis of anomaly detection methods and their relationship with city surfaces with the aim to improve information extraction processes. Spectral ranges of the visible-near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) from hyperspectral data cubes of AHS sensor and HyMAP and MASTER of two cities, Alcalá de Henares (Spain) and San José (Costa Rica) respectively, have been used. <br><br> In this research it is assumed no prior knowledge of the targets, thus, the pixels are automatically separated according to their spectral information, significantly differentiated with respect to a background, either globally for the full scene, or locally by image segmentation. Several experiments on urban scenarios and semi-urban have been designed, analyzing the behaviour of the standard RX anomaly detector and different methods based on subspace, image projection and segmentation-based anomaly detection methods. A new technique for anomaly detection in hyperspectral data called DATB (Detector of Anomalies from Thermal Background) based on dimensionality reduction by projecting targets with unknown spectral signatures to a background calculated from thermal spectrum wavelengths is presented. First results and their consequences in non-supervised classification and extraction information processes are discussed.


2016 ◽  
Vol 20 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Giulia Tagliabue ◽  
Cinzia Panigada ◽  
Roberto Colombo ◽  
Francesco Fava ◽  
Chiara Cilia ◽  
...  

Abstract The accurate mapping of forest species is a very important task in relation to the increasing need to better understand the role of the forest ecosystem within environmental dynamics. The objective of this paper is the investigation of the potential of a multi-temporal hyperspectral dataset for the production of a thematic map of the dominant species in the Forêt de Hardt (France). Hyperspectral data were collected in June and September 2013 using the Airborne Prism EXperiment (APEX) sensor, covering the visible, near-infrared and shortwave infrared spectral regions with a spatial resolution of 3 m by 3 m. The map was realized by means of a maximum likelihood supervised classification. The classification was first performed separately on images from June and September and then on the two images together. Class discrimination was performed using as input 3 spectral indices computed as ratios between red edge bands and a blue band for each image. The map was validated using a testing set selected on the basis of a random stratified sampling scheme. Results showed that the algorithm performances improved from an overall accuracy of 59.5% and 48% (for the June and September images, respectively) to an overall accuracy of 74.4%, with the producer’s accuracy ranging from 60% to 86% and user’s accuracy ranging from 61% to 90%, when both images (June and September) were combined. This study demonstrates that the use of multi-temporal high-resolution images acquired in two different vegetation development stages (i.e., 17 June 2013 and 4 September 2013) allows accurate (overall accuracy 74.4%) local-scale thematic products to be obtained in an operational way.


2019 ◽  
Author(s):  
Arundhati Deshmukh ◽  
Danielle Koppel ◽  
Chern Chuang ◽  
Danielle Cadena ◽  
Jianshu Cao ◽  
...  

Technologies which utilize near-infrared (700 – 1000 nm) and short-wave infrared (1000 – 2000 nm) electromagnetic radiation have applications in deep-tissue imaging, telecommunications and satellite telemetry due to low scattering and decreased background signal in this spectral region. However, there are few molecular species, which absorb efficiently beyond 1000 nm. Transition dipole moment coupling (e.g. J-aggregation) allows for redshifted excitonic states and provides a pathway to highly absorptive electronic states in the infrared. We present aggregates of two cyanine dyes whose absorption peaks redshift dramatically upon aggregation in water from ~ 800 nm to 1000 nm and 1050 nm with sheet-like morphologies and high molar absorptivities (e ~ 10<sup>5 </sup>M<sup>-1</sup>cm<sup>-1</sup>). To describe this phenomenology, we extend Kasha’s model for J- and H-aggregation to describe the excitonic states of <i> 2-dimensional aggregates</i> whose slip is controlled by steric hindrance in the assembled structure. A consequence of the increased dimensionality is the phenomenon of an <i>intermediate </i>“I-aggregate”, one which redshifts yet displays spectral signatures of band-edge dark states akin to an H-aggregate. We distinguish between H-, I- and J-aggregates by showing the relative position of the bright (absorptive) state within the density of states using temperature dependent spectroscopy. Our results can be used to better design chromophores with predictable and tunable aggregation with new photophysical properties.


Sign in / Sign up

Export Citation Format

Share Document