Flexible method for improved transmitter parameter calibration in accurate large-scale positioning system

2019 ◽  
Vol 58 (06) ◽  
pp. 1 ◽  
Author(s):  
Qing Liu ◽  
Huashuai Ren ◽  
Kun Jia ◽  
Xiao Pan ◽  
Jie Zhang ◽  
...  
2018 ◽  
Vol 119 (4) ◽  
pp. 1471-1484 ◽  
Author(s):  
E. Ferrea ◽  
L. Suriya-Arunroj ◽  
D. Hoehl ◽  
U. Thomas ◽  
A. Gail

Acute neuronal recordings performed with metal microelectrodes in nonhuman primates allow investigating the neural substrate of complex cognitive behaviors. Yet the daily reinsertion and positioning of the electrodes prevents recording from many neurons simultaneously, limiting the suitability of these types of recordings for brain-computer interface applications or for large-scale population statistical methods on a trial-by-trial basis. In contrast, chronically implanted multielectrode arrays offer the opportunity to record from many neurons simultaneously, but immovable electrodes prevent optimization of the signal during and after implantation and cause the tissue response to progressively impair the transduced signal quality, thereby limiting the number of different neurons that can be recorded over the lifetime of the implant. Semichronically implanted matrices of electrodes, instead, allow individually movable electrodes in depth and achieve higher channel count compared with acute methods, hence partially overcoming these limitations. Existing semichronic systems with higher channel count lack computerized control of electrode movements, leading to limited user-friendliness and uncertainty in depth positioning. Here we demonstrate a chronically implantable adaptive multielectrode positioning system with detachable drive for computerized depth adjustment of individual electrodes over several millimeters. This semichronic 16-channel system is designed to optimize the simultaneous yield of units in an extended period following implantation since the electrodes can be independently depth adjusted with minimal effort and their signal quality continuously assessed. Importantly, the electrode array is designed to remain within a chronic recording chamber for a prolonged time or can be used for acute recordings with high signal-to-noise ratio in the cerebral cortex of nonhuman primates. NEW & NOTEWORTHY We present a 16-channel motorized, semichronic multielectrode array with individually depth-adjustable electrodes to record in the cerebral cortex of nonhuman primates. Compared with fixed-geometry arrays, this system allows repeated reestablishing of single neuron isolation. Compared with manually adjustable arrays it benefits from computer-controlled positioning. Compared with motorized semichronic systems it allows higher channel counts due to a robotic single actuator approach. Overall the system is designed to optimize the simultaneous yield of units over the course of implantation.


2021 ◽  
Author(s):  
Wenjun Su ◽  
Junkang Guo ◽  
Zhigang Liu ◽  
Kang Jia

Abstract Rotary-laser automatic theodolite (R-LAT) system is a distributed large-scale metrology system, which provides parallel measurement in scalable measurement room without obvious precision losing. Each of R-LAT emits two nonparallel laser planes to scan the measurement space via evenly rotation, while the photoelectric sensors receive these laser planes signals and performs the coordinate calculation based on triangulation. The accurate geometric parameters of the two laser planes plays a crucial role in maintaining the measurement precision of R-LAT system. Practically, the geometry of the two laser plane, which is termed as intrinsic parameters, is unknown after assembled. Therefore, how to figure out the accurate intrinsic parameters of each R-LAT is a fundamental question for the application of R-LAT system. This paper proposed an easily operated intrinsic parameter calibration method for R-LAT system with adopting coordinate measurement machine. The mathematic model of laser planes and the observing equation group of R-LAT are established. Then, the intrinsic calibration is formulated as a nonlinear least square problem that minimize the sum of deviations of target points and laser planes, and the ascertain of its initial guess is introduced. At last, experience is performed to verify the effectiveness of this method, and simulations are carried out to investigate the influence of the target point configuration on the accuracy of intrinsic parameters.


Author(s):  
Uma V. ◽  
Jayanthi Ganapathy

Urban spatial data is the source of information in analysing risks due to natural disaster, evacuation planning, risk mapping and assessments, etc. Global positioning system (GPS) is a satellite-based technology that is used to navigate on earth. Geographical information system (GIS) is a software system that facilitates software services to mankind in various application domains such as agriculture, ecology, forestry, geomorphology analysis in earthquake and landslides, laying of underground water pipe connection and demographic studies like population migration, urban settlements, etc. Thus, spatial and temporal relations of real-time activities can be analysed to predict the future activities like predicting places of interest. Time analysis of such activities helps in personalisation of activities or development of recommendation systems, which could suggest places of interest. Thus, GPS mapping with data analytics using GIS would pave way for commercial and business development in large scale.


2000 ◽  
Author(s):  
D. N. Walker ◽  
W. Amatucci ◽  
R. Lanham ◽  
G. Gatling ◽  
T. McCulloch

Sign in / Sign up

Export Citation Format

Share Document