Effects of radiation-induced defects on the charge collection efficiency of a silicon carbide particle detector

2013 ◽  
Author(s):  
Naoya Iwamoto ◽  
Shinobu Onoda ◽  
Takahiro Makino ◽  
Takeshi Ohshima ◽  
Kazutoshi Kojima ◽  
...  
2006 ◽  
Vol 911 ◽  
Author(s):  
Anna Cavallini ◽  
Antonio Castaldini ◽  
Filippo Nava ◽  
Paolo Errani ◽  
Vladimir Cindro

AbstractWe investigated the electronic levels of defects introduced in 4H-SiC α-particle detectors by irradiation with 1 MeV neutrons up to a fluence equal to 8x1015 n/cm2. As well, we investigated their effect on the detector radiation hardness. This study was carried out by deep level transient spectroscopy (DLTS) and photo-induced current transient spectroscopy (PICTS). As the irradiation level approaches fluences in the order of 1015 n/cm2, the material behaves as highly resistive due to a very great compensation effect but the diodes are still able to detect with a acceptably good charge collection efficiency (CCE) equal to 80%. By further increasing fluence, CCE decreases reaching the value of ≈ 20% at fluence of 8x1015 n/cm2.The dominant peaks in the PICTS spectra occur in the temperature range [400, 700] K. Enthalpy, capture cross-section and order of magnitude of the density of such deep levels were calculated. In the above said temperature range the deep levels associated to the radiation induced defects play the key role in the degradation of the CCE. Two deep levels at Et = 1.18 eV and Et = 1.50 eV are likely to be responsible of such dramatic decrease of the charge collection efficiency. These levels were reasonably associated to an elementary defect involving a carbon vacancy and to a defect complex involving a carbon and a silicon vacancy, respectively.


2005 ◽  
Vol 483-485 ◽  
pp. 1021-1024 ◽  
Author(s):  
Francesco Moscatelli ◽  
Andrea Scorzoni ◽  
Antonella Poggi ◽  
Mara Bruzzi ◽  
Stefano Lagomarsino ◽  
...  

Silicon carbide is a promising wide-gap material because of its excellent electrical and physical properties, which are very relevant to technological applications. In particular, silicon carbide can represent a good alternative to Si in applications like the inner tracking detectors of particle physics experiments [1]. In this work p+/n SiC diodes realized on a medium doped (1×1015 cm -3), 40 µm thick epitaxial layer are exploited as detectors and measurements of their charge collection properties under beta particle radiation from Sr90 source are presented. Preliminary results till 900 V reverse voltage show a good collection efficiency of 1700 e- and a collection length (ratio between collected charges and generated e-h pairs/µm) equal to the estimated width of the depleted region.


2007 ◽  
Vol 556-557 ◽  
pp. 961-964 ◽  
Author(s):  
Alexander M. Ivanov ◽  
Nikita B. Strokan ◽  
Alexander A. Lebedev ◽  
Vitalii V. Kozlovski

The charge collection efficiency (ССЕ) of SiC-detectors preliminarily irradiated with 8 MeV protons at a fluence of 1014 cm-2 has been studied. Nuclear spectrometric techniques with 5.4 MeV α-particles were employed to test the detectors. The concentration of primarily created defects was estimated to be 4×1016 cm-3. A strong compensation of SiC was observed, which allowed connection of the structure in the forward mode. The experimental data obtained were processed using a simple two-parameter model of signal formation. The model makes it possible to separate the contributions of electrons and holes to the ССЕ. An additional irradiation at a fluence of 2×1014 cm-2 reduced the ССЕ value by a factor of 2 and gave rise to polarization. The latter indicates that radiation-induced centers are not only actively involved in carrier localization (with a decrease in the lifetime), but also in transformation of the electric field within the detector.


2009 ◽  
Vol 615-617 ◽  
pp. 853-856
Author(s):  
Alexander M. Ivanov ◽  
Nikita B. Strokan ◽  
Alexander A. Lebedev ◽  
Vitalii V. Kozlovski

The effect of a cycle "introduction of defects – annealing – introduction of defects" on the SiC properties has been studied to know the degradation of characteristics of p-n- nuclear radiation detectors. The irradiation with 8 МeV protons at fluences of about 3×1014 сm-2 was used. The annealing was carried out in two stages one-hour at temperatures of 600 and 700 °С. Nuclear spectrometric techniques with 5.8 MeV -particles were employed to test the detectors. The charge collection efficiency and features of the amplitude spectrum were determined to study the capture of charge carriers by radiation-induced defects. Measurements were made in the temperature range of 20–250 °С. It is shown that at 250 °С there is a decrease in the carriers capture. The form of the amplitude spectrum essentially improves. The first irradiation and the subsequent annealing do not change significantly the radiation hardness of SiC. During the second irradiation the effective concentration of the introduced centers is 1.3 times higher. This result may be due to the high total fluence of protons, 6×1014 cm-2.


2013 ◽  
Vol 8 (03) ◽  
pp. C03023-C03023 ◽  
Author(s):  
M Jakubek ◽  
J Jakubek ◽  
J Zemlicka ◽  
M Platkevic ◽  
V Havranek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document