X-ray diffraction tomography of polycrystalline materials: present and future (Conference Presentation)

Author(s):  
Stuart R. Stock ◽  
Jonathan D. Almer ◽  
Henrik Birkedal
1996 ◽  
Vol 437 ◽  
Author(s):  
D.P. Piotrowski ◽  
S.R. Stock ◽  
A. Guvenilir ◽  
J.D. Haase ◽  
Z.U. Rek

AbstractIn order to understand the macroscopic response of polycrystalline structural materials to loading, it is frequently essential to know the spatial distribution of strain as well as the variation of micro-texture on the scale of 100 μm. The methods must be nondestructive, however, if the three-dimensional evolution of strain is to be studied. This paper describes an approach to high resolution synchrotron x-ray diffraction tomography of polycrystalline materials. Results from model samples of randomly-packed, millimeter-sized pieces of Si wafers and of similarly sized single-crystal Al blocks have been obtained which indicate that polychromatic beams collimated to 30 μm diameter can be used to determine the depth of diffracting volume elements within ± 70 μm. The variation in the two-dimensional distribution of diffracted intensity with changing sample to detector separation is recorded on image storage plates and used to infer the depth of diffracting volume elements.


Author(s):  
Doĝa Gürsoy ◽  
Tekin Biçer ◽  
Jonathan D. Almer ◽  
Raj Kettimuthu ◽  
Stuart R. Stock ◽  
...  

A maximum a posteriori approach is proposed for X-ray diffraction tomography for reconstructing three-dimensional spatial distribution of crystallographic phases and orientations of polycrystalline materials. The approach maximizes the a posteriori density which includes a Poisson log-likelihood and an a priori term that reinforces expected solution properties such as smoothness or local continuity. The reconstruction method is validated with experimental data acquired from a section of the spinous process of a porcine vertebra collected at the 1-ID-C beamline of the Advanced Photon Source, at Argonne National Laboratory. The reconstruction results show significant improvement in the reduction of aliasing and streaking artefacts, and improved robustness to noise and undersampling compared to conventional analytical inversion approaches. The approach has the potential to reduce data acquisition times, and significantly improve beamtime efficiency.


1994 ◽  
Vol 375 ◽  
Author(s):  
S. R. Stock ◽  
A. Guvenilir ◽  
D. P. Piotrowski ◽  
Z. U. Rek

AbstractThe macroscopic response of polycrystalline materials to loading depends on both the spatial distribution of strain and the variation of microtexture on the scale of 100 μm. Nondestructive measurements are needed if the three-dimensional evolution of strain is to be studied. This paper describes approaches for high resolution synchrotron polychromatic x-ray diffraction tomography of polycrystalline materials. Preliminary experiments are reported on partially cracked compact tension samples of Al-Li 2090 and on model samples of randomly-packed, millimeter-sized pieces of Si wafers. Polychromatic beams collimated to 100 μm diameter have been used, and the distribution of diffracted intensity has been collected on high resolution x-ray film as well as on image storage plates. The depths of diffracting volume elements are determined from the changes in the spatial distribution of diffracted intensity with varying sample to detector separation.


1996 ◽  
Vol 67 (9) ◽  
pp. 3358-3358
Author(s):  
Stuart R. Stock ◽  
D. P. Piotrowski ◽  
A. Guvenilir ◽  
C. R. Patterson ◽  
J. D. Haase ◽  
...  

2003 ◽  
Vol 104 ◽  
pp. 27-30 ◽  
Author(s):  
T. Beetz ◽  
C. Jacobsen ◽  
C.-C. Kao ◽  
J. Kirz ◽  
O. Mentes ◽  
...  

Author(s):  
David S. Wragg ◽  
Georgios N. Kalantzopoulos ◽  
Dimitrios K. Pappas ◽  
Irene Pinilla-Herrero ◽  
Daniel Rojo-Gama ◽  
...  

Optica ◽  
2018 ◽  
Vol 5 (6) ◽  
pp. 733 ◽  
Author(s):  
Zheyuan Zhu ◽  
Ryan A. Ellis ◽  
Shuo Pang

2011 ◽  
Vol 67 (a1) ◽  
pp. C113-C113
Author(s):  
H. Liu ◽  
L. Wang ◽  
Z. Yu ◽  
L. Kong ◽  
J. Zhao ◽  
...  

2006 ◽  
Vol 524-525 ◽  
pp. 273-278
Author(s):  
Thomas Wroblewski ◽  
A. Bjeoumikhov ◽  
Bernd Hasse

X-ray diffraction imaging applies an array of parallel capillaries in front of a position sensitive detector. Conventional micro channel plates of a few millimetre thickness have successfully been used as collimator arrays but require short sample to detector distances to achieve high spatial resolution. Furthermore, their limited absorption restricts their applications to low energy X-rays of around 10 keV. Progress in the fabrication of long polycapillaries allows an increase in the sample to detector distance without decreasing resolution and the use of high X-ray energies enables bulk investigations in transmission geometry.


Sign in / Sign up

Export Citation Format

Share Document