High Resolution Synchrotron X-Ray Diffraction Tomography of Polycrystalline Samples

1994 ◽  
Vol 375 ◽  
Author(s):  
S. R. Stock ◽  
A. Guvenilir ◽  
D. P. Piotrowski ◽  
Z. U. Rek

AbstractThe macroscopic response of polycrystalline materials to loading depends on both the spatial distribution of strain and the variation of microtexture on the scale of 100 μm. Nondestructive measurements are needed if the three-dimensional evolution of strain is to be studied. This paper describes approaches for high resolution synchrotron polychromatic x-ray diffraction tomography of polycrystalline materials. Preliminary experiments are reported on partially cracked compact tension samples of Al-Li 2090 and on model samples of randomly-packed, millimeter-sized pieces of Si wafers. Polychromatic beams collimated to 100 μm diameter have been used, and the distribution of diffracted intensity has been collected on high resolution x-ray film as well as on image storage plates. The depths of diffracting volume elements are determined from the changes in the spatial distribution of diffracted intensity with varying sample to detector separation.

1996 ◽  
Vol 437 ◽  
Author(s):  
D.P. Piotrowski ◽  
S.R. Stock ◽  
A. Guvenilir ◽  
J.D. Haase ◽  
Z.U. Rek

AbstractIn order to understand the macroscopic response of polycrystalline structural materials to loading, it is frequently essential to know the spatial distribution of strain as well as the variation of micro-texture on the scale of 100 μm. The methods must be nondestructive, however, if the three-dimensional evolution of strain is to be studied. This paper describes an approach to high resolution synchrotron x-ray diffraction tomography of polycrystalline materials. Results from model samples of randomly-packed, millimeter-sized pieces of Si wafers and of similarly sized single-crystal Al blocks have been obtained which indicate that polychromatic beams collimated to 30 μm diameter can be used to determine the depth of diffracting volume elements within ± 70 μm. The variation in the two-dimensional distribution of diffracted intensity with changing sample to detector separation is recorded on image storage plates and used to infer the depth of diffracting volume elements.


Author(s):  
Doĝa Gürsoy ◽  
Tekin Biçer ◽  
Jonathan D. Almer ◽  
Raj Kettimuthu ◽  
Stuart R. Stock ◽  
...  

A maximum a posteriori approach is proposed for X-ray diffraction tomography for reconstructing three-dimensional spatial distribution of crystallographic phases and orientations of polycrystalline materials. The approach maximizes the a posteriori density which includes a Poisson log-likelihood and an a priori term that reinforces expected solution properties such as smoothness or local continuity. The reconstruction method is validated with experimental data acquired from a section of the spinous process of a porcine vertebra collected at the 1-ID-C beamline of the Advanced Photon Source, at Argonne National Laboratory. The reconstruction results show significant improvement in the reduction of aliasing and streaking artefacts, and improved robustness to noise and undersampling compared to conventional analytical inversion approaches. The approach has the potential to reduce data acquisition times, and significantly improve beamtime efficiency.


1996 ◽  
Vol 67 (9) ◽  
pp. 3358-3358
Author(s):  
Stuart R. Stock ◽  
D. P. Piotrowski ◽  
A. Guvenilir ◽  
C. R. Patterson ◽  
J. D. Haase ◽  
...  

2019 ◽  
Vol 8 (3) ◽  
pp. 388-399 ◽  
Author(s):  
Jiwoong Kang ◽  
Ning Lu ◽  
Issac Loo ◽  
Nancy Senabulya ◽  
Ashwin J. Shahani

Abstract Direct imaging of three-dimensional microstructure via X-ray diffraction-based techniques gives valuable insight into the crystallographic features that influence materials properties and performance. For instance, X-ray diffraction tomography provides information on grain orientation, position, size, and shape in a bulk specimen. As such techniques become more accessible to researchers, demands are placed on processing the datasets that are inherently “noisy,” multi-dimensional, and multimodal. To fulfill this need, we have developed a one-of-a-kind function package, PolyProc, that is compatible with a range of data shapes, from planar sections to time-evolving and three-dimensional orientation data. Our package comprises functions to import, filter, analyze, and visualize the reconstructed grain maps. To accelerate the computations in our pipeline, we harness computationally efficient approaches: for instance, data alignment is done via genetic optimization; grain tracking through the Hungarian method; and feature-to-feature correlation through k-nearest neighbors algorithm. As a proof-of-concept, we test our approach in characterizing the grain texture, topology, and evolution in a polycrystalline Al–Cu alloy undergoing coarsening.


2006 ◽  
Vol 23 (5) ◽  
pp. 1179 ◽  
Author(s):  
Henry N. Chapman ◽  
Anton Barty ◽  
Stefano Marchesini ◽  
Aleksandr Noy ◽  
Stefan P. Hau-Riege ◽  
...  

2021 ◽  
Vol 118 (22) ◽  
pp. e2105046118
Author(s):  
Stefano M. Cavaletto ◽  
Daniel Keefer ◽  
Jérémy R. Rouxel ◽  
Flavia Aleotti ◽  
Francesco Segatta ◽  
...  

The outcomes and timescales of molecular nonadiabatic dynamics are decisively impacted by the quantum coherences generated at localized molecular regions. In time-resolved X-ray diffraction imaging, these coherences create distinct signatures via inelastic photon scattering, but they are buried under much stronger background elastic features. Here, we exploit the rich dynamical information encoded in the inelastic patterns, which we reveal by frequency-dispersed covariance ultrafast powder X-ray diffraction of stochastic X-ray free-electron laser pulses. This is demonstrated for the photoisomerization of azobenzene involving the passage through a conical intersection, where the nuclear wave packet branches and explores different quantum pathways. Snapshots of the coherence dynamics are obtained at high frequency shifts, not accessible with conventional diffraction measurements. These provide access to the timing and to the confined spatial distribution of the valence electrons directly involved in the conical intersection passage. This study can be extended to full three-dimensional imaging of conical intersections with ultrafast X-ray and electron diffraction.


2010 ◽  
Vol 43 (3) ◽  
pp. 539-549 ◽  
Author(s):  
Jette Oddershede ◽  
Søren Schmidt ◽  
Henning Friis Poulsen ◽  
Henning Osholm Sørensen ◽  
Jonathan Wright ◽  
...  

An algorithm is presented for characterization of the grain resolved (type II) stress states in a polycrystalline sample based on monochromatic X-ray diffraction data. The algorithm is a robust 12-parameter-per-grain fit of the centre-of-mass grain positions, orientations and stress tensors including error estimation and outlier rejection. The algorithm is validated by simulations and by two experiments on interstitial free steel. In the first experiment, using only a far-field detector and a rotation range of 2 × 110°, 96 grains in one layer were monitored during elastic loading and unloading. Very consistent results were obtained, with mean resolutions for each grain of approximately 10 µm in position, 0.05° in orientation, and 8, 20 and 13 × 10−5in the axial, normal and shear components of the strain, respectively. The corresponding mean deviations in stress are 30, 50 and 15 MPa in the axial, normal and shear components, respectively, though some grains may have larger errors. In the second experiment, where a near-field detector was added, ∼2000 grains were characterized with a positional accuracy of 3 µm.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Karim Louca ◽  
Hamidreza Abdolvand ◽  
Charles Mareau ◽  
Marta Majkut ◽  
Jonathan Wright

AbstractThe mechanical response of polycrystalline materials to an externally applied load and their in-service performance depend on the local load partitioning among the constituent crystals. In hexagonal close-packed polycrystals such load partitioning is significantly affected by deformation twinning. Here we report in-situ compression-tension experiments conducted on magnesium specimens to measure the evolution of grain resolved tensorial stresses and formation and annihilation of twins. More than 13000 grains and 1300 twin-parent pairs are studied individually using three-dimensional synchrotron X-ray diffraction. It is shown that at the early stages of plasticity, the axial stress in twins is higher than that of parents, yet twins relax with further loading. While a sign reversal is observed for the resolved shear stress (RSS) acting on the twin habit plane in the parent, the sign of RSS within the majority of twins stays unchanged until twin annihilation during the load reversal. The variations of measured average stresses across parents and twins are also investigated.


Sign in / Sign up

Export Citation Format

Share Document