Micro Diffraction Imaging of Bulk Polycrystalline Materials

2006 ◽  
Vol 524-525 ◽  
pp. 273-278
Author(s):  
Thomas Wroblewski ◽  
A. Bjeoumikhov ◽  
Bernd Hasse

X-ray diffraction imaging applies an array of parallel capillaries in front of a position sensitive detector. Conventional micro channel plates of a few millimetre thickness have successfully been used as collimator arrays but require short sample to detector distances to achieve high spatial resolution. Furthermore, their limited absorption restricts their applications to low energy X-rays of around 10 keV. Progress in the fabrication of long polycapillaries allows an increase in the sample to detector distance without decreasing resolution and the use of high X-ray energies enables bulk investigations in transmission geometry.

2021 ◽  
Vol 54 (2) ◽  
pp. 597-603
Author(s):  
Mari Mizusawa ◽  
Kenji Sakurai

Conventional X-ray diffraction measurements provide some average structural information, mainly on the crystal structure of the whole area of the given specimen, which might not be very uniform and may include different crystal structures, such as co-existing crystal phases and/or lattice distortion. The way in which the lattice plane changes due to strain also might depend on the position in the sample, and the average information might have some limits. Therefore, it is important to analyse the sample with good lateral spatial resolution in real space. Although various techniques for diffraction topography have been developed for single crystals, it has not always been easy to image polycrystalline materials. Since the late 1990s, imaging technology for fluorescent X-rays and X-ray absorption fine structure has been developed via a method that does not scan either a sample or an X-ray beam. X-ray diffraction imaging can be performed when this technique is applied to a synchrotron radiation beamline with a variable wavelength. The present paper reports the application of X-ray diffraction imaging to bulk steel materials with varying hardness. In this study, the distribution of lattice distortion of hardness test blocks with different hardness was examined. Via this 2D visualization method, the grains of the crystals with low hardness are large enough to be observed by X-ray diffraction contrast in real space. The change of the d value in the vicinity of the Vickers mark has also been quantitatively evaluated.


2013 ◽  
Vol 772 ◽  
pp. 21-25 ◽  
Author(s):  
Jörn Donges ◽  
André Rothkirch ◽  
Thomas Wroblewski ◽  
Aniouar Bjeoumikhov ◽  
Oliver Scharf ◽  
...  

Position resolved structural information from polycrystalline materials is usually obtained via micro beam techniques illuminating only a single spot of the specimen. Multiplexing in reciprocal space is achieved either by the use of an area detector or an energy dispersive device. Alternatively spatial information may be obtained simultaneously from a large part of the sample by using an array of parallel collimators between the sample and a position sensitive detector which suppresses crossfire of radiation scattered at different positions in the sample. With the introduction of an X-ray camera based on an energy resolving area detector (pnCCD) we could combine this with multiplexing in reciprocal space.


Author(s):  
Kannan M. Krishnan

X-rays diffraction is fundamental to understanding the structure and crystallography of biological, geological, or technological materials. X-rays scatter predominantly by the electrons in solids, and have an elastic (coherent, Thompson) and an inelastic (incoherent, Compton) component. The atomic scattering factor is largest (= Z) for forward scattering, and decreases with increasing scattering angle and decreasing wavelength. The amplitude of the diffracted wave is the structure factor, F hkl, and its square gives the intensity. In practice, intensities are modified by temperature (Debye-Waller), absorption, Lorentz-polarization, and the multiplicity of the lattice planes involved in diffraction. Diffraction patterns reflect the symmetry (point group) of the crystal; however, they are centrosymmetric (Friedel law) even if the crystal is not. Systematic absences of reflections in diffraction result from glide planes and screw axes. In polycrystalline materials, the diffracted beam is affected by the lattice strain or grain size (Scherrer equation). Diffraction conditions (Bragg Law) for a given lattice spacing can be satisfied by varying θ or λ — for study of single crystals θ is fixed and λ is varied (Laue), or λ is fixed and θ varied to study powders (Debye-Scherrer), polycrystalline materials (diffractometry), and thin films (reflectivity). X-ray diffraction is widely applied.


1989 ◽  
Vol 33 ◽  
pp. 397-402 ◽  
Author(s):  
Shin'ichi Ohya ◽  
Yasuo Yoshioka

When an x-ray diffraction profile Is measured for stress analysis or profile analysis by the use of a linear (straight line) position sensitive proportional counter (PSPC) , a convex-type background line is obtained because of the geometrical problem and the absorption of x-rays. Such phenomenon is remarkable when a wide angular range is set on a linear PSPC and it is, in particular, necessary to correct with a straight background for accurate measurement of diffraction angle or half-value breadth of the broadened diffraction profile.


1989 ◽  
Vol 33 ◽  
pp. 389-396 ◽  
Author(s):  
Y. Yoshioka ◽  
T. Shinkai ◽  
S. Ohya

The development of linear position-sensitive detectors (PSD) has resulted in a large reduction of data acquisition times in the field of x-ray stress analysis. However, we also require two-dimensional (2-D) diffraction patterns for material evaluation. Especially, the microbeam x-ray diffraction technique gives valuable information on the structure of crystalline materials and this technique has been applied to fracture analysis by x-rays. Many kinds of 2-D PSD have been developed that have insufficient spatial resolution. So x-ray film has still been used as a 2-D detector, but it requires relatively long exposure times and then the process after exposure is very troublesome.


2006 ◽  
Vol 524-525 ◽  
pp. 859-864
Author(s):  
Neila Hfaiedh ◽  
Manuel François ◽  
Khemais Saanouni

Internal stresses are an important factor in understanding the work hardening behaviour of polycrystalline materials. The goal of the present paper is to study the development of second order stresses in textured copper sheets at large plastic strains, up to fracture by X-ray diffraction. Second order stresses manifest themselves as peak displacements and width changes as azimuth and tilt angles are varied. As the acquisition is performed with a position sensitive detector, a specific correction of intensities is required in order to take into account texture influence on peak shape and consequently on peak position and width.


2005 ◽  
Vol 20 (4) ◽  
pp. 294-305 ◽  
Author(s):  
R. Guinebretière ◽  
A. Boulle ◽  
O. Masson ◽  
A. Dauger

The purpose of this paper is to give a rapid overview of the recent developments in the field of X-ray diffraction on polycrystalline materials from the viewpoint of the instruments. After a brief historical report, the main types of laboratory diffractometers are presented. At the end of the twentieth century the apparition of position sensitive detectors and artificial crystal monochromators have induced the conception of new diffractometer often based on old geometrical arrangements. Those modern diffractometers are described with respect to the more conventional ones. Among the experimental parameters which can characterize a given diffractometer, the instrumental resolution function and the acquisition time of the pattern are of primary importance. The different apparatus are compared with respect to those two parameters.


1994 ◽  
Vol 38 ◽  
pp. 201-213 ◽  
Author(s):  
S. R. Lee ◽  
B. L. Doyle ◽  
T. J. Drummond ◽  
J. W. Medernach ◽  
P. Schneider

Abstract Reciprocal space mapping can be efficiently carried out using a position-sensitive x-ray detector (PSD) coupled to a traditional double-axis diffractometer. The PSD offers parallel measurement of the total scattering angle of all diffracted x-rays during a single rocking-curve scan. As a result, a two-dimensional reciprocal space map can be made in a very short time similar to that of a one-dimensional rocking-curve scan. Fast, efficient reciprocal space mapping offers numerous routine advantages to the x-ray diffraction analyst. Some of these advantages arc the explicit differentiation of lattice strain from crystal orientation effects in strain-relaxed heteroepitaxial layers; the nondestructive characterization of the size, shape and orientation of nanocrystalline domains in ordered-alloy epilayers; and the ability to measure the average size and shape of voids in porous epilayers. Here, the PSD-based diffractometer is described, and specific examples clearly illustrating the advantages of complete reciprocal space analysis are presented.


1998 ◽  
Vol 5 (3) ◽  
pp. 226-231 ◽  
Author(s):  
U. Lienert ◽  
C. Schulze ◽  
V. Honkimäki ◽  
Th. Tschentscher ◽  
S. Garbe ◽  
...  

Novel focusing optical devices have been developed for synchrotron radiation in the energy range 40–100 keV. Firstly, a narrow-band-pass focusing energy-tuneable fixed-exit monochromator was constructed by combining meridionally bent Laue and Bragg crystals. Dispersion compensation was applied to retain the high momentum resolution despite the beam divergence caused by the focusing. Next, microfocusing was achieved by a bent multilayer arranged behind the crystal monochromator and alternatively by a bent Laue crystal. A 1.2 µm-high line focus was obtained at 90 keV. The properties of the different set-ups are described and potential applications are discussed. First experiments were performed, investigating with high spatial resolution the residual strain gradients in layered polycrystalline materials. The results underline that focused high-energy synchrotron radiation can provide unique information on the mesoscopic scale to the materials scientist, complementary to existing techniques based on conventional X-ray sources, neutron scattering or electron microscopy.


1970 ◽  
Vol 14 ◽  
pp. 139-145
Author(s):  
W. S. Toothacker ◽  
L. E. Preuss

AbstractLobov et al., in Leningrad, and workers at this laboratory have been working on the idea of using x rays from radioactive sources for x ray diffraction analysis. The Russians have been using iron-55 produced by the (n, Y) reaction in their work with a small focusing camera which operates in the back reflection region. We have been using iron-55 produced by the (p,n) reaction in conjunction with a small Debye-Scherrer camera. The preliminary work of this laboratory was reported at this conference two years ago. At that time a 13 mCi iron-55 source was used in a two inch diameter Debye-Scherrer camera to obtain x-ray diffraction patterns of LiF. The exposure times were of the order of 120 hours and the reflection from the 200 plane was about 3 degrees wide. Since that time a new and more intense source has been constructed at Oak Ridge National Laboratories. With the new source it was possible to produce LiF diffraction patterns of the same density and resolution as before in a period of less than ten hours.The above mentioned diffraction patterns were made with the LiF powder placed in a 1.0 mm diameter glass capillary. After reduction of the glass capillary diameter to 0.5 mm and appropriate reduction of the collimator width, we were able to improve the resolution considerably with no accompanying reduction in line density. The LiF patterns obtained in this way required an exposure time of about 20 hours and the width of the reflection from the 200 plane has been reduced to about 1.5 degrees.Hence we are able to report a reduction in exposure time from 116 hours to 20 hours and an increase in resolution by a factor of two over the data reported here two years ago. Thus the concept of using x rays from an isotope for powder diffraction has changed from a laboratory curiosity into a technique with practical possibilities. Both sources mentioned above were produced by the (p, n) reaction. The 135 mCi source had a specific activity of about 400 Ci/gm. Since iron-55 sources have been made with specific activities of about 1000 Ci/gm, a considerable decrease in exposure time could be accomplished by using such a source. The application to this work of a position sensitive proportional counter as developed by Semmler will also be discussed.


Sign in / Sign up

Export Citation Format

Share Document