The analysis and compensation of errors of precise simple harmonic motion control under high speed and large load conditions based on servo electric cylinder

Author(s):  
Chenxi Ma ◽  
Guoqing Ding
2010 ◽  
Vol 7 ◽  
pp. 109-117
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov ◽  
B.S. Yudintsev

The article deals with the development of a high-speed sensor system for a mobile robot, used in conjunction with an intelligent method of planning trajectories in conditions of high dynamism of the working space.


2021 ◽  
pp. 002029402110022
Author(s):  
Xiaohua Zhou ◽  
Jianbin Zheng ◽  
Xiaoming Wang ◽  
Wenda Niu ◽  
Tongjian Guo

High-speed scanning is a huge challenge to the motion control of step-scanning gene sequencing stage. The stage should achieve high-precision position stability with minimal settling time for each step. The existing step-scanning scheme usually bases on fixed-step motion control, which has limited means to reduce the time cost of approaching the desired position and keeping high-precision position stability. In this work, we focus on shortening the settling time of stepping motion and propose a novel variable step control method to increase the scanning speed of gene sequencing stage. Specifically, the variable step control stabilizes the stage at any position in a steady-state interval rather than the desired position on each step, so that reduces the settling time. The resulting step-length error is compensated in the next acceleration and deceleration process of stepping to avoid the accumulation of errors. We explicitly described the working process of the step-scanning gene sequencer and designed the PID control structure used in the variable step control for the gene sequencing stage. The simulation was performed to check the performance and stability of the variable step control. Under the conditions of the variable step control where the IMA6000 gene sequencer prototype was evaluated extensively. The experimental results show that the real gene sequencer can step 1.54 mm in 50 ms period, and maintain a high-precision stable state less than 30 nm standard deviation in the following 10 ms period. The proposed method performs well on the gene sequencing stage.


1969 ◽  
Vol 7 (7) ◽  
pp. 395-396
Author(s):  
Thomas B. Greenslade

1949 ◽  
Vol 39 (3) ◽  
pp. 205-218
Author(s):  
S. K. Chakrabarty

Summary The equation of motion of the seismometer and the galvanometer in an electromagnetic seismograph has been derived in the most general form taking into consideration all the forces acting on the system except that produced by hysteresis. A general solution has been derived assuming that the earth or the seismometer frame is subjected to a sustained simple harmonic motion, and expressions for both the transient and the steady term in the solution have been given. The results for the particular case when the seismograph satisfies the Galitzin conditions can easily be deduced from the results given in the present paper. The results can now be used to study the response characteristics of all electromagnetic seismographs, whether they satisfy the Galitzin conditions or not, and will thus give an accurate theoretical picture of the response also of seismographs used for the study of “local earthquakes” and “microseisms” which do not in general obey the Galitzin conditions. The results obtained can also be used to get analytically the response of the seismographs for different types of earth motion from the very beginning, and not only after the transient term has disappeared. The theory of the response to simple tests used to determine the dynamic magnification of any seismograph and also to determine and check regularly the instrumental constants of the seismographs has been worked out. The results obtained can also be used for ascertaining the proper values of the instrumental constants suitable for the various purposes for which the seismographs are to be used.


2011 ◽  
Vol 141 ◽  
pp. 198-202
Author(s):  
Bo Li ◽  
Qing Jian Liu ◽  
Zhi Feng Qiao ◽  
Jing Chuan Dong ◽  
Qing Liu

This paper focus on a motion control card based on DSP, designed an interface communication between DSP and industrial PC. After a contrast about several methods of communication, this interface take the Dual-port RAM as the final way. This communication method regard the DRAM as the sharing storage unit, use the semaphores of the DRAM chip to prevent visiting the same address at same time on boths port and achieve the high speed communication between DSP and PC104.


Sign in / Sign up

Export Citation Format

Share Document